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1.0 Introduction
 
Although GIS technology is just a few decades old, its analytical approaches have evolved as much as its mapping
capabilities and practical expressions.  In the 1960s analytical software development primarily occurred on campuses
and its products relegated to library shelves.  These formative years provided the basic organization for both data and
processing structures found in a modern GIS.  A raging debate centered on “vector vs. raster” formats and efficient
algorithms for processing— technical considerations with minimal resonance outside of the small (but growing) group
of innovators.
 
The early 1970s saw Computer Mapping automate the cartographic process.  The points, lines and areas defining
geographic features on a map were represented as organized sets of X,Y coordinates.  In turn these data form input to
a pen plotter that can rapidly update and redraw the connections at a variety of scales and projections.  The map
image, itself, is the focus of this processing.

The early 1980s exploited the change in the format and the computer environment of mapped data.  Spatial Database
Management Systems were developed that link computer mapping techniques to traditional database capabilities. 
The demand for spatially and thematically linked data focused attention on data issues.  The result was an integrated
processing environment addressing a wide variety of mapped data and digital map products.
 
During the 1990s a resurgence of attention was focused on analytical operations and a comprehensive theory of
spatial analysis began to emerge.  This "map-ematical" processing involves spatial statistics and spatial analysis. 
Spatial statistics has been used by geophysicists and climatologists since the 1950s to characterize the geographic
distribution, or pattern, of mapped data.  The statistics describe the spatial variation in the data, rather than assuming
a typical response occurs everywhere within a project area.
 
Spatial analysis, on the other hand, expresses a geographic relationships as a series of map analysis steps, leading to
a solution map in a manner analogous to basic algebra.   Most of the traditional mathematical capabilities, plus an
extensive set of advanced map analysis operations, are available in contemporary GIS software.  You can add,
subtract, multiply, divide, exponential, root, log, cosine, differentiate and even integrate maps.  After all, maps in a GIS
are just an organized set of numbers.  However in map analysis, the spatial coincidence and juxtaposition of values
among and within mapped data create new operations, such as effective distance, optimal path routing, visual
exposure density, landscape diversity, shape and pattern.
 
GIS modeling encompasses the varied applications of the concepts, procedures and approaches ingrained spatial
analysis and statistics.  This chapter investigates a generalized framework supporting GIS modeling and analysis
within a grid-based GIS environment. 
 
Several sections and chapters in this manual address specific analytical and statistical techniques in more detail, as
well as comprehensively describing additional modeling applications.  In addition, the online book, Map Analysis:
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Procedures and Applications in GIS Modeling provides more detailed discussion of the material presented in each of
the sections of this chapter (see Author’s Note).

 
 

1.1 Mapping to Analysis of Mapped Data
 
The evolution (or is it a revolution?) of GIS technology has certainly taken it well beyond the traditional roles of
mapping.  For thousands of years maps were graphic representations of physical features primarily for the
purpose of navigation.  With the advent of geotechnology, maps have changed form to digital representations
that are linked to databases and a host of new processing and analytical capabilities.
 
Figure 1.1-1 identifies two key trends in the movement from mapping to map analysis.  Traditional GIS treats
geographic space in a manner similar to our paper map legacy.  Points, lines and polygons are used to define
discrete spatial objects, such as houses, streams and lakes.  In turn, these objects are linked to attributes in a
database that describe their characteristics and conditions.  The result is a tremendously useful system
enabling users to make complex geo-queries of the information and then map the results.
 

Figure 1.1-1. Spatial Analysis and Spatial Statistics are extensions of traditional ways of analyzing mapped
data.

 
Spatial Analysis extends the basic set of discrete map features of points, lines and polygons to map “surfaces”
that represent continuous geographic space as a set of contiguous grid cell values.  The consistency of this
grid-based structuring provides the foothold for a wealth of new analytical tools for characterizing “contextual
spatial relationships,” such as identifying the visual exposure of an entire road network.
 
In addition, it provides a mathematical/statistical framework by numerically representing geographic space. 
Traditional Statistics is inherently non-spatial as it seeks to represent a data set by its typical response
regardless of spatial patterns.  The mean, standard deviation and other statistics are computed to describe the
central tendency of the data in abstract numerical space without regard to the relative positioning of the data
in real-world geographic space.
 
Spatial Statistics, on the other hand, extends traditional statistics on two fronts.  First, it seeks to map the
variation in a data set to show where unusual responses occur, instead of focusing on a single typical
response.  Secondly, it can uncover “numerical spatial relationships” within and among mapped data layers,
such as generating a prediction map identifying where likely customers are within a city based on existing
sales and demographic information.
 
1.2 Vector-based Mapping versus Grid-based Analysis
 
The close conceptual link of vector-based desktop mapping to manual mapping and traditional database
management has fueled its rapid adoption.  In many ways, a database is just picture waiting to happen.  The
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direct link between attributes described as database records and their spatial characterization is easy to
conceptualize.  Geo-query enables clicking on a map to pop-up the attribute record for a location or searching
a database then plotting all of the records meeting the query.   Increasing data availability and Internet access,
coupled with decreasing desktop mapping system costs and complexity, make the adoption of spatial
database technology a practical reality. 
 
Maps in their traditional form of points, lines and polygons identifying discrete spatial objects align with manual
mapping concepts and experiences.  Grid-based maps, on the other hand, represent a different paradigm of
geographic space that opens entirely new ways to address complex issues.  Whereas traditional vector maps
emphasize ‘precise placement of physical features,’ grid maps seek to ‘analytically characterize continuous
geographic space in both real and cognitive terms.’ 

 
 
2.0 Fundamental Map Analysis Approaches
 
The tools for mapping database attributes can be extended to analysis of spatial relationships within and among
mapped data layers.  Two broad classes of capabilities form this extension—spatial statistics and spatial analysis. 
 

2.1 Spatial Statistics
 
Spatial statistics can be grouped into two broad camps—surface modeling and spatial data mining.  Surface
modeling involves the translation of discrete point data into a continuous surface that represents the
geographic distribution of the data.  Traditional non-spatial statistics involves an analogous process when a
numerical distribution (e.g., standard normal curve) is used to generalize the central tendency of a data set. 
The derived average and standard deviation reflects the typical response and provides a measure of how
typical it is.  This characterization seeks to explain data variation in terms of the numerical distribution of
measurements without reference to the data’s geographic distribution and patterns. 
 
In fact, an underlying assumption in most traditional statistical analyses is that the data is randomly or
uniformly distributed in geographic space.  If the data exhibits a geographic pattern (termed spatial
autocorrelation) many of the non-spatial analysis techniques are less valid.  Spatial statistics, on the other
hand, utilizes inherent geographic patterns to further explain the variation in a set of sample data. 
 
There are numerous techniques for characterizing the spatial distribution inherent in a data set but they can
be categorized into four basic approaches:
 

-       Point Density mapping that aggregates the number of points within a specified distance (number per
acre),

-       Spatial Interpolation that weight-averages measurements within a localized area (e.g., Kriging), and 
-       Map Generalization that fits a functional form to the entire data set (e.g., polynomial surface fitting). 
-       Geometric Facets that construct a map surface by tessellation (e.g., fitting a Triangular Irregular

Network of facets to the sample data).
 

Figure 2.1-1.  Calculating the total number of houses within a specified distance of each map location
generates a housing density surface.
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For example, consider figure 2.1-1 showing a point density map derived from a map identifying housing
locations.  The project area is divided into an analysis frame of 30-meter grid cells (100 columns x 100 rows =
10,000 grid cells).  The number of houses for each grid space is identified in left portion of the figure as
colored dots in the 2D map and “spikes” in the 3D map. 
 
A neighborhood summary operation is used to pass a “roving window” over the project area calculating the
total number of houses within a quarter-mile of each map location.  The result is a continuous map surface
indicating the relative density of houses—‘peaks’ where there is a lot of nearby houses and ‘valleys’ where
there are few or none.  In essence, the map surface quantifies what your eye sees in the spiked map—some
locations with lots of houses and others with very few. 
 
While surface modeling is used to derive continuous surfaces, spatial data mining seeks to uncover numerical
relationships within and among mapped data.  Some of the techniques include coincidence summary,
proximal alignment, statistical tests, percent difference, surface configuration, level-slicing, and clustering that
is used in comparing maps and assessing similarities in data patterns. 
 
Another group of spatial data mining techniques focuses on developing predictive models.  For example, one
of the earliest uses of predictive modeling was in extending a test market project for a phone company (figure
2.1-2).  Customers’ address were used to “geo-code” map coordinates for sales of a new product enabling
distinctly different rings to be assigned to a single phone line—one for the kids and one for the parents.  Like
pushpins on a map, the pattern of sales throughout the test market area emerged with some areas doing very
well, while other areas sales were few and far between. 
 

 

Figure 2.1-2.  Spatial Data Mining techniques can be used to derive predictive models of the relationships
among mapped data.

 
The demographic data for the city was analyzed to calculate a prediction equation between product sales and
census block data.  The prediction equation derived from the test market sales was applied to another city by
evaluating exiting demographics to “solve the equation” for a predicted sales map.  In turn the predicted map
was combined with a wire-exchange map to identify switching facilities that required upgrading before release
of the product in the new city.
 
2.2 Spatial Analysis
 
Whereas spatial data mining responds to ‘numerical’ relationships in mapped data, spatial analysis
investigates the ‘contextual’ relationships.  Tools such as slope/aspect, buffers, effective proximity, optimal
path, visual exposure and shape analysis, fall into this class of spatial operators.  Rather than statistical
analysis of mapped data, these techniques examine geographic patterns, vicinity characteristics and
connectivity among features.  
 
One of the most frequently used map analysis techniques is Suitability Modeling.  These applications seek to
map the relative appropriateness of map locations for particular uses.  For example, a map of the best
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locations for a campground might be modeled by preferences for being on gentle slopes, near roads, near
water, good views of water and a southerly aspect. 
 
These spatial criteria can be organized into a flowchart of processing (see figure 2.2-1) where boxes identify
maps and lines identify map analysis operations.  Note that the rows of the flowchart identify decision criteria
with boxes representing maps and lines representing map analysis operations.  For example, the top row
evaluates the preference to locate the campground on gentle slopes. 
 

 
Figure 2.2-1.  Map Analysis techniques can be used to identify suitable places for a management activity.

 
The first step calculates a slope map from the base map of elevation by entering the command—
 

SLOPE Elevation Fitted FOR Slopemap
 
The derived slope values are then reclassified to identify locations of acceptable slopes by assigning 1 to
slopes from 0 to 20 percent—
 

RENUMBER Slopemap ASSIGNING 1 TO 0 THRU 20
   ASSIGNING 0 TO 20 THRU 1000 FOR OK_slope  

 
—and assigning 0 to unacceptably steep slopes that are greater than 20 percent.
 
In a similar manner, the other criteria are evaluated and represented by maps with a value of 1 assigned to
acceptable areas (white) and 0 assigned to unacceptable areas (dark grey).  The individual preference maps
are combined by entering the command—
 

CALCULATE OK_slope * OK_road * OK_water * OK_view * OK_aspect
   FOR Campground_suitability

 
The map analysis procedure depicted in figure 2.2-1 simply substitutes values of 1 and 0 for suitable and non-
suitable areas.  The multiplication of the digital preference maps simulates stacking manual map overlays on a
light-table.  A location that computes to 1 (1*1*1*1*1= 1) corresponds to acceptable.  Any numeric pattern with
the value 0 will result in a product of 0 indicating an unacceptable area.
 
While some map analysis techniques are rooted in manual map processing, most are departures from
traditional procedures.  For example, the calculation of slope is much more exacting than ocular estimates of
contour line spacing.  And the calculation of visual exposure to water presents a completely new and useful
concept in natural resources planning.  Other procedures, such as optimal path routing, landscape
fragmentation indices and variable-width buffers, offer a valuable new toolbox of analytical capabilities. 
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3.0 Data Structure Implications
Points, lines and polygons have long been used to depict map features.  With the stroke of a pen a cartographer
could outline a continent, delineate a road or identify a specific building’s location.  With the advent of the
computer, manual drafting of these data has been replaced by stored coordinates and the cold steel of the plotter. 
 
In digital form these spatial data have been linked to attribute tables that describe characteristics and conditions of
the map features.  Desktop mapping exploits this linkage to provide tremendously useful database management
procedures, such as address matching and driving directions from you house to a store along an organized set of
city street line segments.  Vector-based data forms the foundation of these processing techniques and directly
builds on our historical perspective of maps and map analysis.
 
Grid-based data, on the other hand, is a relatively new way to describe geographic space and its relationships.  At
the heart of this digital format is a new map feature that extends traditional points, lines and polygons (discrete
objects) to continuous map surfaces.          
 
The rolling hills and valleys in our everyday world is a good example of a geographic surface.  The elevation
values constantly change as you move from one place to another forming a continuous spatial gradient.  The left-
side of figure 3.0-1 shows the grid data structure and a sub-set of values used to depict the terrain surface shown
on the right-side.  Note that the shaded zones ignore the subtle elevation differences within the contour polygons
(vector representation).

 

Figure 3.0-1.  Grid-based data can be displayed in 2D/3D lattice or grid forms.
 
Grid data are stored as a continuous organized set of values in a matrix that is geo-registered over the terrain. 
Each grid cell identifies a specific location and contains a map value representing its average elevation.  For
example, the grid cell in the lower-right corner of the map is 1800 feet above sea level (falling within the 1700 to
1900 contour interval).  The relative heights of surrounding elevation values characterize the subtle changes of the
undulating terrain of the area.
 

3.1 Grid Data Organization
 
Map features in a vector-based mapping system identify discrete, irregular spatial objects with sharp abrupt
boundaries.  Other data types—raster images and raster grids—treat space in entirely different manner
forming a spatially continuous data structure. 
 
For example, a raster image is composed of thousands of ‘pixels’ (picture elements) that are analogous to the
dots on a computer screen.  In a geo-registered B&W aerial photo, the dots are assigned a grayscale color
from black (no reflected light) to white (lots of reflected light).  The eye interprets the patterns of gray as
forming the forests, fields, buildings and roads of the actual landscape.  While raster maps contain
tremendous amounts of information that are easily “seen” and computer classified using remote sensing
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software, the data values reference color codes reflecting electromagnetic response that are too limited to
support the full suite of map analysis operations involving relationships within and among maps. 
 

Figure 3.1-1.  A map stack of individual grid layers can be stored as separate files or in a multi-grid table.
 
Raster grids, on the other hand, contain a robust range of values and organizational structure amenable to
map analysis and modeling.  As depicted on the left side of figure 3.1-1, this organization enables the
computer to identify any or all of the data for a particular location by simply accessing the values for a given
column/row position (spatial coincidence used in point-by-point overlay operations).  Similarly, the immediate
or extended neighborhood around a point can be readily accessed by selecting the values at neighboring
column/row positions (zonal groupings used in region-wide overlay operations).  The relative proximity of one
location to any other location is calculated by considering the respective column/row positions of two or more
locations (proximal relationships used in distance and connectivity operations).
 
There are two fundamental approaches in storing grid-based data—individual “flat” files and “multiple-grid”
tables (right side of figure 3.1-1).  Flat files store map values as one long list, most often starting with the
upper-left cell, then sequenced left to right along rows ordered from top to bottom.  Multi-grid tables have a
similar ordering of values but contain the data for many maps as separate field in a single table. 
 
Generally speaking the flat file organization is best for applications that create and delete a lot of maps during
processing as table maintenance can affect performance.  However, a multi-gird table structure has inherent
efficiencies useful in relatively non-dynamic applications.  In either case, the implicit ordering of the grid cells
over continuous geographic space provides the topological structure required for advanced map analysis.

3.2 Grid Data Types
 
Understanding that a digital map is first and foremost an organized set of numbers is fundamental to analyzing
mapped data.  The location of map features are translated into computer form as organized sets of X,Y
coordinates (vector) or grid cells (raster).  Considerable attention is given data structure considerations and
their relative advantages in storage efficiency and system performance.
 
However this geo-centric view rarely explains the full nature of digital maps.  For example, consider the
numbers themselves that comprise the X,Y coordinates—how does number type and size effect precision?  A
general feel for the precision ingrained in a “single precision floating point” representation of
Latitude/Longitude in decimal degrees is—
 

1.31477E+08 ft = equatorial circumference of the earth
1.31477E+08 ft / 360 degrees = 365214 ft per degree of Longitude

   
A single precision number carries six decimal places, so—
 

365214 ft/degree * 0.000001= .365214 ft *12 = 4.38257 inch precision
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In analyzing mapped data however, the characteristics of the attribute values are just as critical as precision in
positioning.  While textual descriptions can be stored with map features they can only be used in geo-query. 
Figure 3.2-1 lists the data types by two important categories—numeric and geographic.  Nominal numbers do
not imply ordering.  A value of 3 isn’t bigger, tastier or smellier than a 1, it is just not a 1.  In the figure these
data are schematically represented as scattered and independent pieces of wood.
 
Ordinal numbers, on the other hand, imply a definite ordering and can be conceptualized as a ladder, however
with varying spaces between rungs.  The numbers form a progression, such as smallest to largest, but there
isn’t a consistent step.  For example you might rank different five different soil types by their relative crop
productivity (1= worst to 5= best) but it doesn’t mean that soil type 5 is exactly five times more productive than
soil type 1.
 
When a constant step is applied, Interval numbers result.  For example, a 60o Fahrenheit spring day is
consistently/incrementally warmer than a 30o winter day.  In this case one “degree” forms a consistent
reference step analogous to typical ladder with uniform spacing between rungs. 
 
A ratio number introduces yet another condition—an absolute reference—that is analogous to a consistent
footing or starting point for the ladder, analogous to zero degrees Kelvin temperature scale that defines when
all molecular movement ceases.  A final type of numeric data is termed Binary.  In this instance the value
range is constrained to just two states, such as forested/non-forested or suitable/not-suitable. 
 

Figure 3.2-1.  Map values are characterized from two broad perspectives—numeric and geographic—then
further refined by specific data types.

 
So what does all of this have to do with analyzing digital maps?  The type of number dictates the variety of
analytical procedures that can be applied.  Nominal data, for example, do not support direct mathematical or
statistical analysis.  Ordinal data support only a limited set of statistical procedures, such as maximum and
minimum.  These two data types are often referred to as Qualitative Data.  Interval and ratio data, on the other
hand, support a full set mathematics and statistics and are considered Quantitative Data.  Binary maps
support special mathematical operators, such as .AND. and .OR.  
 
The geographic characteristics of the numbers are less familiar.  From this perspective there are two types of
numbers.  Choropleth numbers form sharp and unpredictable boundaries in space such as the values on a
road or cover type map.  Isopleth numbers, on the other hand, form continuous and often predictable
gradients in geographic space, such as the values on an elevation or temperature surface.
 
Figure 3.2-2 puts it all together.  Discrete maps identify mapped data with independent numbers (nominal)
forming sharp abrupt boundaries (choropleth), such as a cover type map.  Continuous maps contain a range
of values (ratio) that form spatial gradients (isopleth), such as an elevation surface. 
 
The clean dichotomy of discrete/continuous is muddled by cross-over data such as speed limits (ratio)
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assigned to the features on a road map (choropleth).  Understanding the data type, both numerical and
geographic, is critical to applying appropriate analytical procedures and construction of sound GIS models.
 

 
Figure 3.2-2.  Discrete and Continuous map types combine the numeric and geographic characteristics of

mapped data.
 
 
3.3 Grid Data Display
 
Two basic approaches can be used to display grid data— grid and lattice.  The Grid display form uses cells to
convey surface configuration.  The 2D version simply fills each cell with the contour interval color, while the 3D
version pushes up each cell to its relative height.  The Lattice display form uses lines to convey surface
configuration.  The contour lines in the 2D version identify the breakpoints for equal intervals of increasing
elevation.  In the 3D version the intersections of the lines are “pushed-up” to the relative height of the
elevation value stored for each location. 
 
Figure 3.3-1 shows how 3D plots are generated.  Placing the viewpoint at different look-angles and distances
creates different perspectives of the reference frame.  For a 3D grid display entire cells are pushed to the
relative height of their map values.  The grid cells retain their projected shape forming blocky extruded
columns.  The 3D lattice display pushes up each intersection node to its relative height.  In doing so the four
lines connected to it are stretched proportionally.  The result is a smooth wire-frame that expands and
contracts with the rolling hills and valleys. 
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Figure 3.3-1.  3D display “pushes-up” the grid or lattice reference frame to the relative height of the stored
map values.

 
Generally speaking, lattice displays create more pleasing maps and knock-your-socks-off graphics when you
spin and twist the plots.  However, grid displays provide a more honest picture of the underlying mapped data
—a chunky matrix of stored values.  In either case, one must recognize that a 3-D display is not the sole
province of elevation data.  Often a 3-dimensional plot of data such as effective proximity is extremely useful
in understanding the subtle differences in distances.
 
3.4 Visualizing Grid Values 

In a GIS, map display is controlled by a set of user-defined tools—not the cartographer/publisher team that
produced hardcopy maps just a couple of decades ago.  The upside is a tremendous amount of flexibility in
customizing map display (potential for tailoring).  The downside is a tremendous amount of flexibility in
customizing map display (potential for abuse). 
 
The display tools are both a boon and a bane as they require minimal skills to use but considerable thought
and experience to use correctly.  The interplay among map projection, scale, resolution, shading and symbols
can dramatically change a map’s appearance and thereby the information it graphically conveys to the
viewer. 
 
While this is true for the points, lines and areas comprising traditional maps, the potential for cartographic
effects are even more pronounced for contour maps of surface data.  For example, consider the mapped data
of animal activity levels from 0.0 to 85.2 animals in a 24-hour period shown in figure 3.4-1.  The map on the
left uses an Equal Ranges display with contours derived by dividing the data range into nine equal steps.  The
flat area at the foot of the hill skews the data distribution toward lower values.  The result is significantly more
map locations contained in the lower contour intervals— first interval from 0 to 9.5 = 39% of the map area. 
The spatial effect is portrayed by the radically different areal extent of the contours.
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Figure 3.4-1. Comparison of different 2D contour displays using Equal ranges, Equal Count and +/-1 Standard
deviation contouring techniques.

 
The middle map in the figure shows the same data displayed as Equal Counts with contours that divide the
data range into intervals that represent equal amounts of the total map area.  Notice the unequal spacing of
the breakpoints in the data range but the balanced area of the color bands—the opposite effect as equal
ranges. 
 
The map on the right depicts yet another procedure for assigning contour breaks.  This approach divides the
data into groups based on the calculated mean and Standard Deviation.  The standard deviation is added to
the mean to identify the breakpoint for the upper contour interval and subtracted to set the lower interval.  In
this case, the lower breakpoint calculated is below the actual minimum so no values are assigned to the first
interval (highly skewed data).  In statistical terms the low and high contours are termed the “tails” of the
distribution and locate data values that are outside the bulk of the data— identifying “unusually” lower and
higher values than you normally might expect.  The other five contour intervals in the middle are formed by
equal ranges within the lower and upper contours.  The result is a map display that highlights areas of
unusually low and high values and shows the bulk of the data as gradient of increasing values.
 
The bottom line of visual analysis is that the same surface data generated dramatically different map
products.  All three displays contain nine intervals but the methods of assigning the breakpoints to the
contours employ radically different approaches that generate fundamentally different map displays. 
 
So which display is correct?  Actually all three displays are proper, they just reflect different perspectives of
the same data distribution—a bit of the art in the art and science of GIS.  The translation of continuous
geographic data into discrete 2D maps invariably conjures up artful interpretation.  A good rule of thumb is to
be skeptical of the lines on any map that portrays continuous phenomena, such as elevation, proximity,
buffers, density, visual exposure or activity.  Visualizing and analyzing these data are usually best when the
full information content of map surfaces is employed. 
 

 
 
4.0 Spatial Statistics Techniques
 
As outlined in section 2.1, Spatial Statistics can be grouped into two broad camps—surface modeling and spatial data
mining.  Surface Modeling involves the translation of discrete point data into a continuous surface that represents the
geographic distribution of the data.  Spatial Data Mining, on the other hand, seeks to uncover numerical relationships
within and among sets of mapped data. 

 
4.1 Surface Modeling
 
The conversion of a set of point samples into its implied geographic distribution involves several
considerations—an understanding of the procedures themselves, the underlying assumptions, techniques for
benchmarking the derived map surfaces and methods for assessing the results and characterizing accuracy. 
 

4.1.1 Point Samples to Map Surfaces
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Soil sampling has long been at the core of agricultural research and practice.  Traditionally point-
sampled data were analyzed by non-spatial statistics to identify the typical nutrient level throughout
an entire field.  Considerable effort was expended to determine the best single estimate and assess
just how good the average estimate was in typifying a field.
 
However non-spatial techniques fail to make use of the geographic patterns inherent in the data to
refine the estimate—the typical level is assumed everywhere the same within a field.  The computed
standard deviation indicates just how good this assumption is—the larger the standard deviation the
less valid is the assumption “…everywhere the same.”
 
Surface Modeling utilizes the spatial patterns in a data set to generate localized estimates throughout
a field.  Conceptually it maps the variance by using geographic position to help explain the differences
in the sample values.  In practice, it simply fits a continuous surface to the point data spikes as
depicted in figure 4.1.1-1.
 

Figure 4.1.1-1.  Spatial interpolation involves fitting a continuous surface to sample points.
 
While the extension from non-spatial to spatial statistics is quite a theoretical leap, the practical steps
are relatively easy.  The left side of the figure shows 2D and 3D point maps of phosphorous soil
samples collected throughout the field.  This highlights the primary difference from traditional soil
sampling—each sample must be geo-referenced as it is collected.  In addition, the sampling pattern
and intensity are often different than traditional grid sampling to maximize spatial information within
the data collected.
 
The surface map on the right side of the figure depicts the continuous spatial distribution derived from
the point data.  Note that the high spikes in the left portion of the field and the relatively low
measurements in the center are translated into the peaks and valleys of the surface map. 
 
When mapped, the traditional, non-spatial approach forms a flat plane (average phosphorous level)
aligned within the bright yellow zone.  Its “…everywhere the same” assumption fails to recognize the
patterns of larger levels and smaller levels captured in the surface map of the data’s geographic
distribution.  A fertilization plan for phosphorous based on the average level (22ppm) would be ideal
for very few locations and be inappropriate for most of the field as the sample data varies from 5 to
102ppm phosphorous.
 
4.1.2 Spatial Autocorrelation
 
Spatial Interpolation’s basic concept involves Spatial Autocorrelation, referring to the degree of
similarity among neighboring points (e.g., soil nutrient samples).  If they exhibit a lot similarity, termed
spatial dependence, they ought to derive a good map.   If they are spatially independent, then expect
a map of pure, dense gibberish.   So how can we measure whether “what happens at one location
depends on what is happening around it?"
 
Common sense leads us to believe more similarity exists among the neighboring soil samples (lines
in the left side of figure 4.1.2-1) than among sample points farther away.   Computing the differences
in the values between each sample point and its closest neighbor provides a test of the assertion as

http://www.innovativegis.com/basis/papers/other/asprschapter/Default_files/image021.png


nearby differences should be less than the overall difference among the values of all sample
locations. 

 

Figure 4.1.2-1. Variogram plot depicts the relationship between distance and measurement similarity
(spatial autocorrelation).

 
If the differences in neighboring values are a lot smaller than the overall variation, then a high degree
of positive spatial dependency is indicated.  If they are about the same or if the neighbors variation is
larger (indicating a rare checkerboard-like condition), then the assumption of spatial dependence
fails.  If the dependency test fails, it means an interpolated soil nutrient map likely is just colorful
gibberish. 
 
The difference test however, is limited as it merely assesses the closest neighbor, regardless of its
distance.  A Variogram (right side of figure 4-2) is a plot of the similarity among values based on the
distance between them.  Instead of simply testing whether close things are related, it shows how the
degree of dependency relates to varying distances between locations.  The origin of the plot at 0,0 is
a unique case where the distance between samples is zero and there is no dissimilarity (data
variation = 0) indicating that a location is exactly the same as itself.
 
As the distance between points increase, subsets of the data are scrutinized for their dependency. 
The shaded portion in the idealized plot shows how quickly the spatial dependency among points
deteriorates with distance.  The maximum range (Max Range) position identifies the distance
between points beyond which the data values are considered independent.  This tells us that using
data values beyond this distance for interpolation actually can mess-up the interpolation. 
 
The minimum range (Min Range) position identifies the smallest distance contained in the actual data
set and is determined by the sampling design used to collect the data.  If a large portion of the shaded
area falls below this distance, it tells you there is insufficient spatial dependency in the data set to
warrant interpolation.  If you proceed with the interpolation, a nifty colorful map will be generated, but
likely of questionable accuracy.  Worse yet, if the sample data plots as a straight line or circle, no
spatial dependency exists and the map will be of no value.
 
Analysis of the degree of spatial autocorrelation in a set of point samples is mandatory before
spatially interpolating any data.  This step is not required to mechanically perform the analysis as the
procedure will always generate a map.  However, it is the initial step in determining if the map
generated is likely to be a good one.

4.1.3 Benchmarking Interpolation Approaches
 
For some, the previous discussion on generating maps from soil samples might have been too
simplistic—enter a few things then click on a data file and, in a few moments you have a soil nutrient
surface.  Actually, it is that easy to create one.  The harder part is figuring out if the map generated
makes sense and whether it is something you ought to use for subsequent analysis and important
management decisions. 
 
The following discussion investigates the relative amounts of spatial information provided by
comparing a whole-field average to interpolated map surfaces generated from the same data set. 
The top-left portion in figure 4.1.3-3 shows the map of the average phosphorous level in the field.  It
forms a flat surface as there isn’t any information about spatial variability in an average value. 
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The non-spatial estimate simply adds up all of the sample measurements and divides by the number
of samples to get 22ppm.  Since the procedure didn’t consider the relative position of the different
samples, it is unable to map the variations in the measurements.  The assumption is that the average
is everywhere, plus or minus the standard deviation.  But there is no spatial guidance where
phosphorous levels might be higher, or where they might be lower than the average.
 

Figure 4.1.3-1.  Spatial comparison of a whole-field average and an IDW interpolated map.
 
The spatially based estimates are shown in the interpolated map surface below the average plane. 
As described in the previous section 4.1.2, spatial interpolation looks at the relative positioning of the
soil samples as well as their measure phosphorous levels.  In this instance the big bumps were
influenced by high measurements in that vicinity while the low areas responded to surrounding low
values.
 
The map surface in the right portion of figure 4.1.3-1 compares the two maps simply by subtracting
them.  The color ramp was chosen to emphasize the differences between the whole-field average
estimates and the interpolated ones.  The center yellow band indicates the average level while the
progression of green tones locates areas where the interpolated map estimated that there was more
phosphorous than the whole field average.  The higher locations identify where the average value is
less than the interpolated ones.  The lower locations identify the opposite condition where the
average value is more than the interpolated ones.  Note the dramatic differences between the two
maps.
 
Now turn your attention to figure 4.1.3-2 that compares maps derived by two different interpolation
techniques—IDW (inverse distance-weighted) and Krig.  Note the similarity in the peaks and valleys
of the two surfaces.  While subtle differences are visible the general trends in the spatial distribution of
the data are identical.
 
The difference map on the right confirms the coincident trends.  The broad band of yellow identifies
areas that are +/- 1 ppm.  The brown color identifies areas that are within 10 ppm with the IDW
surface estimates a bit more than the Krig ones.  Applying the same assumption about +/- 10 ppm
difference being negligible in a fertilization program the maps are effectively identical.
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Figure 4.1.3-2.  Spatial comparison of IDW and Krig interpolated maps.
 
So what’s the bottom line?  That there often are substantial differences between a whole field average
and any interpolated surface.  It suggests that finding the best interpolation technique isn’t as
important as using an interpolated surface over the whole field average.  This general observation
holds most mapped data exhibiting spatial autocorrelation.
 
4.1.4 Assessing Interpolation Results
 
The previous discussion compared the assumption of the field average with map surfaces generated
by two different interpolation techniques for phosphorous levels throughout a field.  While there was
considerable differences between the average and the derived surfaces (from -20 to +80ppm), there
was relatively little difference between the two surfaces (+/- 10ppm).
 
But which surface best characterizes the spatial distribution of the sampled data?  The answer to this
question lies in Residual Analysis—a technique that investigates the differences between estimated
and measured values throughout a field.  It is common sense that one should not simply accept an
interpolated map without assessing its accuracy.  Ideally, one designs an appropriate sampling
pattern and then randomly locates a number of test points to evaluate interpolation performance. 
 
So which surface, IDW or Krig, did a better job in estimating the measured phosphorous levels for a
test set of measurements?  The table in figure 4.1.4-1 reports the results for twelve randomly
positioned test samples.  The first column identifies the sample ID and the second column reports the
actual measured value for that location.
 

Figure 4.1.4-1.  A residual analysis table identifies the relative performance of average, IDW and Krig
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estimates.
 
Column C simply depicts estimating the whole-field average (21.6) at each of the test locations. 
Column D computes the difference of the estimated value minus actual measured value for the test
set—formally termed the residual.  For example, the first test point (ID#59) estimated the average of
21.6 but was actually measured as 20.0, so the residual is 1.6 (21.6-20.0= 1.6ppm) …very close. 
However, test point #109 is way off (21.6-103.0= -81.4ppm) …nearly 400% under-estimate error.
 
The residuals for the IDW and Krig maps are similarly calculated to form columns F and H,
respectively.  First note that the residuals for the whole-field average are generally larger than either
those for the IDW or Krig estimates.  Next note that the residual patterns between the IDW and Krig
are very similar—when one is way off, so is the other and usually by about the same amount.  A
notable exception is for test point #91 where Krig dramatically over-estimates. 
 
The rows at the bottom of the table summarize the residual analysis results.  The Residual sum row
characterizes any bias in the estimates—a negative value indicates a tendency to underestimate with
the magnitude of the value indicating how much.  The –92.8 value for the whole-field average
indicates a relatively strong bias to underestimate.
 
The Average error row reports how typically far off the estimates were.  The 19.0ppm average error
for the whole-field average is three times worse than Krig’s estimated error (6.08) and nearly four
times worse than IDW’s (5.24). 
 
Comparing the figures to the assumption that +/-10ppm is negligible in a fertilization program it is
readily apparent that the whole-field estimate is inappropriate to use and that the accuracy differences
between IDW and Krig are minor.   
 
The Normalized error row simply calculates the average error as a proportion of the average value for
the test set of samples (5.24/29.3= .18 for IDW).  This index is the most useful as it enables the
comparison of the relative map accuracies between different maps.  Generally speaking, maps with
normalized errors of more than .30 are suspect and one might not want to make important decisions
using them.
 
The bottom line is that Residual Analysis is an important consideration when spatially interpolating
data.  Without an understanding of the relative accuracy and interpolation error of the base maps, one
can’t be sure of any modeling results using the data.  The investment in a few extra sampling points
for testing and residual analysis of these data provides a sound foundation for site-specific
management.  Without it, the process can become one of blind faith and wishful thinking.
 

4.2 Spatial Data Mining
 
Spatial data mining involves procedures for uncovering numerical relationships within and among sets of
mapped data.  The underlying concept links a map’s geographic distribution to its corresponding numeric
distribution through the coordinates and map values stored at each location.  This ‘data space’ and
‘geographic space’ linkage provides a framework for calculating map similarity, identifying data zones,
mapping data clusters, deriving prediction maps and refining analysis techniques.
 

4.2.1 Calculating Map Similarity
 
While visual analysis of a set of maps might identify broad relationships, it takes quantitative map
analysis to handle a detailed scrutiny.  Consider the three maps shown in figure 4.2.1-1— what areas
identify similar patterns?  If you focus your attention on a location in the lower right portion how similar
is the data pattern to all of the other locations in the field?
 



Figure 4.2.1-1.  Map surfaces identifying the spatial distribution of P,K and N throughout a field.
 
The answers to these questions are much too complex for visual analysis and certainly beyond the
geo-query and display procedures of standard desktop mapping packages.  While the data in the
example shows the relative amounts of phosphorous, potassium and nitrogen throughout a field, it
could as easily be demographic data representing income, education and property values; or sales
data tracking three different products; or public health maps representing different disease incidences;
or crime statistics representing different types of felonies or misdemeanors.
 
Regardless of the data and application arena, a multivariate procedure for assessing similarity often is
used to analyze the relationships.  In visual analysis you move your eye among the maps to
summarize the color assignments at different locations.  The difficulty in this approach is two-fold—
remembering the color patterns and calculating the difference.  The map analysis procedure does the
same thing except it uses map values in place of the colors.  In addition, the computer doesn’t tire as
easily and completes the comparison for all of the locations throughout the map window (3289 in this
example) in a couple of seconds.
 
The upper-left portion of figure 4.2.1-2 illustrates capturing the data patterns of two locations for
comparison.  The “data spear” at map location 45column, 18row identifies that the P-level as
11.0ppm, the K-level as 177.0 and N-level as 32.9.  This step is analogous to your eye noting a color
pattern of dark-red, dark-orange and light-green.  The other location for comparison (32c, 62r) has a
data pattern of P= 53.2, K= 412.0 and N= 27.9; or as your eye sees it, a color pattern of dark-green,
dark-green and yellow. 
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Figure 4.2.1-2.  Geographic space and data space can be conceptually linked.
 

The right side of the figure conceptually depicts how the computer calculates a similarity value for the
two response patterns.  The realization that mapped data can be expressed in both geographic space
and data space is a key element to understanding the procedure. 
 
Geographic space uses coordinates, such latitude and longitude, to locate things in the real world—
such as the southeast and extreme north points identified in the example.  The geographic expression
of the complete set of measurements depicts their spatial distribution in familiar map form.
 
Data space, on the other hand, is a bit less familiar but can be conceptualized as a box with balls
floating within it.  In the example, the three axes defining the extent of the box correspond to the P, K
and N levels measured in the field.  The floating balls represent grid cells defining the geographic
space—one for each grid cell.  The coordinates locating the floating balls extend from the data axes—
11.0, 177.0 and 32.9 for the comparison point.  The other point has considerably higher values in P
and K with slightly lower N (53.2, 412.0, 27.9) so it plots at a different location in data space. 
 
The bottom line is that the position of any point in data space identifies its numerical pattern—low,
low, low is in the back-left corner, while high, high, high is in the upper-right corner.  Points that plot in
data space close to each other are similar; those that plot farther away are less similar. 
 
In the example, the floating ball in the foreground is the farthest one (least similar) from the
comparison point’s data pattern.  This distance becomes the reference for ‘most different’ and sets the
bottom value of the similarity scale (0%).  A point with an identical data pattern plots at exactly the
same position in data space resulting in a data distance of 0 that equates to the highest similarity
value (100%).
 
The similarity map shown in figure 4.2.1-3 applies the similarity scale to the data distances calculated
between the comparison point and all of the other points in data space.  The green tones indicate field
locations with fairly similar P, K and N levels.  The red tones indicate dissimilar areas.  It is interesting
to note that most of the very similar locations are in the left portion of the field.
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 Figure 4.2.1-3.  A similarity map identifies how related the data patterns are for all other locations to
the pattern of a given comparison location.

 
Map Similarity can be an invaluable tool for investigating spatial patterns in any complex set of
mapped data.  Humans are unable to conceptualize more than three variables (the data space box);
however a similarity index can handle any number of input maps.  In addition, the different layers can
be weighted to reflect relative importance in determining overall similarity.
 
In effect, a similarity map replaces a lot of laser-pointer waving and subjective suggestions of how
similar/dissimilar locations are with a concrete, quantitative measurement for each map location. 

4.2.2 Identifying Data Zones

The preceding section introduced the concept of ‘data distance’ as a means to measure similarity
within a map.  One simply mouse-clicks a location and all of the other locations are assigned a
similarity value from 0 (zero percent similar) to 100 (identical) based on a set of specified maps.  The
statistic replaces difficult visual interpretation of map displays with an exact quantitative measure at
each location.
 
Figure 4.2.2-1 depicts level slicing for areas that are unusually high in P, K and N (nitrogen).  In this
instance the data pattern coincidence is a box in 3-dimensional data space.
 

Figure 4.2.2-1.  Level-slice classification can be used to map sub-groups of similar data patterns.
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A mathematical trick was employed to get the map solution shown in the figure.  On the individual
maps, high areas were set to P=1, K= 2 and N=4, then the maps were added together.  The result is a
range of coincidence values from zero (0+0+0= 0; gray= no high areas) to seven (1+2+4= 7; red=
high P, high K, high N).  The map values between these extremes identify the individual map layers
having high measurements.  For example, the yellow areas with the value 3 have high P and K but
not N (1+2+0= 3).  If four or more maps are combined, the areas of interest are assigned increasing
binary progression values (…8, 16, 32, etc)—the sum will always uniquely identify the combinations.
 
While Level Slicing is not a sophisticated classifier, it illustrates the useful link between data space
and geographic space.  This fundamental concept forms the basis for most geo-statistical analysis
including map clustering and regression.

4.2.3 Mapping Data Clusters
 
While both Map Similarity and Level Slicing techniques are useful in examining spatial relationships,
they require the user to specify data analysis parameters.  But what if you don’t know what level slice
intervals to use or which locations in the field warrant map similarity investigation?  Can the computer
on its own identify groups of similar data?  How would such a classification work?  How well would it
work?
 

Figure 4.2.3-1.  Map clustering identifies inherent groupings of data patterns in geographic space.
 

Figure 4.2.3-1 shows some examples derived from Map Clustering.  The map stack on the left shows
the input maps used for the cluster analysis.  The maps are the same P, K, and N maps identifying
phosphorous, potassium and nitrogen levels used in the previous discussions in this section. 
However, keep in mind that the input maps could be crime, pollution or sales data—any set of
application related data.  Clustering simply looks at the numerical pattern at each map location and
sorts them into discrete groups regardless of the nature of the data or its application.
 
The map in the center of the figure shows the results of classifying the P, K and N map stack into two
clusters.  The data pattern for each cell location is used to partition the field into two groups that meet
the criteria as being 1) as different as possible between groups and 2) as similar as possible within a
group.    
 
The two smaller maps at the right show the division of the data set into three and four clusters.  In all
three of the cluster maps red is assigned to the cluster with relatively low responses and green to the
one with relatively high responses.  Note the encroachment on these marginal groups by the added
clusters that are formed by data patterns at the boundaries.
 
The mechanics of generating cluster maps are quite simple.  Simply specify the input maps and the
number of clusters you want then miraculously a map appears with discrete data groupings.  So how
is this miracle performed?  What happens inside cluster’s black box?
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Figure 4.2.3-2.  Data patterns for map locations are depicted as floating balls in data space.
 

The schematic in figure 4.2.3-2 depicts the process.  The floating balls identify the data patterns for
each map location (geographic space) plotted against the P, K and N axes (data space).  For
example, the large ball appearing closest to you depicts a location with high values on all three input
maps.  The tiny ball in the opposite corner (near the plot origin) depicts a map location with small map
values.  It seems sensible that these two extreme responses would belong to different data groupings.
 
While the specific algorithm used in clustering is beyond the scope of this chapter, it suffices to note
that ‘data distances’ between the floating balls are used to identify cluster membership—groups of
floating balls that are relatively far from other groups and relatively close to each other form separate
data clusters.  In this example, the red balls identify relatively low responses while green ones have
relatively high responses.  The geographic pattern of the classification is shown in the map in the
lower right portion of the figure.
 
Identifying groups of neighboring data points to form clusters can be tricky business.  Ideally, the
clusters will form distinct clouds in data space.  But that rarely happens and the clustering technique
has to enforce decision rules that slice a boundary between nearly identical responses.  Also,
extended techniques can be used to impose weighted boundaries based on data trends or expert
knowledge.  Treatment of categorical data and leveraging spatial autocorrelation are other
considerations.
 
So how do know if the clustering results are acceptable?  Most statisticians would respond, “…you
can’t tell for sure.”  While there are some elaborate procedures focusing on the cluster assignments at
the boundaries, the most frequently used benchmarks use standard statistical indices.
 

http://www.innovativegis.com/basis/papers/other/asprschapter/Default_files/image041.png


 
Figure 4.2.3-3.  Clustering results can be roughly evaluated using basic statistics.

 
Figure 4.2.3-3 shows the performance table and box-and-whisker plots for the map containing two
clusters.  The average, standard deviation, minimum and maximum values within each cluster are
calculated.  Ideally the averages would be radically different and the standard deviations small—large
difference between groups and small differences within groups.
 
Box-and-whisker plots enable a visualize assessment of the differences.  The box is centered on the
average (position) and extends above and below one standard deviation (width) with the whiskers
drawn to the minimum and maximum values to provide a visual sense of the data range.  When the
diagrams for the two clusters overlap, as they do for the phosphorous responses, it suggests that the
clusters are not distinct along this data axis. 
 
The separation between the boxes for the K and N axes suggests greater distinction between the
clusters.  Given the results a practical user would likely accept the classification results.  And
statisticians hopefully will accept in advance apologies for such a conceptual and terse treatment of a
complex spatial statistics topic.

4.2.4 Deriving Prediction Maps

For years non-spatial statistics has been predicting things by analyzing a sample set of data for a
numerical relationship (equation) then applying the relationship to another set of data.  The
drawbacks are that the non-approach doesn’t account for geographic relationships and the result is
just a table of numbers.  Extending predictive analysis to mapped data seems logical; after all, maps
are just organized sets of numbers.  And GIS enables us to link the numerical and geographic
distributions of the data. 
 
To illustrate the data mining procedure, the approach can be applied to the same field that has been
the focus for the previous discussion.  The top portion of figure 4.2.4-1 shows the yield pattern of corn
for the field varying from a low of 39 bushels per acre (red) to a high of 279 (green).  The corn yield
map is termed the dependent map variable and identifies the phenomena to be predicted.
 
The independent map variables depicted in the bottom portion of the figure are used to uncover the
spatial relationship used for prediction— prediction equation.  In this instance, digital aerial imagery
will be used to explain the corn yield patterns.  The map on the left indicates the relative reflectance of
red light off the plant canopy while the map on the right shows the near-infrared response (a form of
light just beyond what we can see). 
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Figure 4.2.4-1.  The corn yield map (top) identifies the pattern to predict; the red and near-infrared
maps (bottom) are used to build the spatial relationship.

 
While it is difficult to visually assess the subtle relationships between corn yield and the red and near-
infrared images, the computer “sees” the relationship quantitatively.  Each grid location in the analysis
frame has a value for each of the map layers— 3,287 values defining each geo-registered map
covering the 189-acre field. 
 
For example, top portion of figure 4.2.4-2 identifies that the example location has a ‘joint’ condition of
red band equals 14.7 and yield equals 218.  The lines parallel to axes in the scatter plot on the right
identifies the precise position of the pair of map values—X= 14.7 and Y= 218.  Similarly, the near-
infrared and yield values for the same location are shown in the bottom portion of the figure. 
 
The set of dots in both of the scatter plots represents all of the data pairs for each grid location.  The
slanted lines through the dots represent the prediction equations derived through regression
analysis.  While the mathematics is a bit complex, the effect is to identify a line that ‘best fits the
data’— just as many data points above as below the regression line. 
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Figure 4.2.4-2.  The joint conditions for the spectral response and corn yield maps are summarized in
the scatter plots shown on the right.

 
In a sense, the line identifies the average yield for each step along the X-axis for the red and near-
infrared bands and a reasonable guess of the corn yield for each level of spectral response.  That’s
how a regression prediction is used— a value for the red band (or near-infrared band) in another field
is entered and the equation for the line calculates a predicted corn yield.  Repeating the calculation
for all of the locations in the field generates a prediction map of yield from remotely sensed data. 
 
A major problem is that the R-squared statistic summarizing the residuals for both of the prediction
equations is fairly small (R^2= 26% and 4.7% respectively) which suggests that the prediction lines do
not fit the data very well.  One way to improve the predictive model might be to combine the
information in both of the images.  The Normalized Density Vegetation Index (NDVI) does just that by
calculating a new value that indicates plant density and vigor— NDVI= ((NIR – Red) / (NIR + Red)). 
 
Figure 4.2.4-3 shows the process for calculating NDVI for the sample grid location— ((121-14.7) /
(121 + 14.7)) = 106.3 / 135.7 = .783.  The scatter plot on the right shows the yield versus NDVI plot
and regression line for all of the field locations.  Note that the R^2 value is a higher at 30% indicating
that the combined index is a better predictor of yield.
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Figure 4.2.4-3.  The red and NIR maps are combined for NDVI value that is a better predictor of yield.
 

The bottom portion of the figure evaluates the prediction equation’s performance over the field.  The
two smaller maps show the actual yield (left) and predicted yield (right).  As you would expect the
prediction map doesn’t contain the extreme high and low values actually measured.
 
The larger map on the right calculates the error of the estimates by simply subtracting the actual
measurement from the predicted value at each map location.  The error map suggests that overall the
yield estimates are not too bad— average error is a 2.62 bu/ac over estimate and 67% of the field is
within +/- 20 bu/ac.  Also note the geographic pattern of the errors with most of the over estimates
occurring along the edge of the field, while most of the under estimates are scattered along NE-SW
strips.
 
Evaluating a prediction equation on the data that generated it is not validation; however the procedure
provides at least some empirical verification of the technique.  It suggests hope that with some
refinement the prediction model might be useful in predicting yield from remotely sensed data well
before harvest.

4.2.5 Stratifying Maps for Better Predictions 

The preceding section described a procedure for predictive analysis of mapped data.  While the
underlying theory, concerns and considerations can be quite complex, the procedure itself is quite
simple.  The grid-based processing preconditions the maps so each location (grid cell) contains the
appropriate data.  The ‘shishkebab’ of numbers for each location within a stack of maps are analyzed
for a prediction equation that summarizes the relationships.
 
The left side of figure 4.2.5-1 shows the evaluation procedure for regression analysis and error map
used to relate a map of NDVI to a map of corn yield for a farmer’s field.  One way to improve the
predictions is to stratify the data set by breaking it into groups of similar characteristics.  The idea is
that set of prediction equations tailored to each stratum will result in better predictions than a single
equation for an entire area.  The technique is commonly used in non-spatial statistics where a data
set might be grouped by age, income, and/or education prior to analysis.  Additional factors for
stratifying, such as neighboring conditions, data clustering and/or proximity can be used as well.
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Figure 4.2.5-1.  A project area can be stratified based on prediction errors.
 
While there are numerous alternatives for stratifying, subdividing the error map will serve to illustrate
the conceptual approach.  The histogram in the center of figure 4.2.5-1 shows the distribution of
values on the Error Map.  The vertical bars identify the breakpoints at +/- 1 standard deviation and
divide the map values into three strata—zone 1 of unusually high under-estimates (red), zone 2 of
typical error (yellow) and zone 3 of unusually high over-estimates (green).  The map on the right of
the figure maps the three strata throughout the field. 
 
The rationale behind the stratification is that the whole-field prediction equation works fairly well for
zone 2 but not so well for zones 1 and 3.  The assumption is that conditions within zone 1 make the
equation under estimate while conditions within zone 3 cause it to over estimate.  If the assumption
holds one would expect a tailored equation for each zone would be better at predicting corn yield than
a single overall equation. 
 
Figure 4.2.5-2 summarizes the results of deriving and applying a set of three prediction equations. 
The left side of the figure illustrates the procedure.  The Error Zones map is used as a template to
identify the NDVI and Yield values used to calculate three separate prediction equations.  For each
map location, the algorithm first checks the value on the Error Zones map then sends the data to the
appropriate group for analysis.  Once the data has been grouped a regression equation is generated
for each zone. 
 

Figure 4.2.5-2.  After stratification, prediction equations can be derived for each element.
 
The R^2 statistic for all three equations (.68, .60, and .42 respectively) suggests that the equations fit
the data fairly well and ought to be good predictors.  The right side of figure 4.2.5-2 shows a
composite prediction map generated by applying the equations to the NDVI data respecting the zones
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identified on the template map. 
 
The left side of figure 4.2.5-3 provides a visual comparison between the actual yield and predicted
maps.  The stratified prediction shows detailed estimates that more closely align with the actual yield
pattern than the ‘whole-field’ derived prediction map using a single equation.  The error map for the
stratified prediction shows that eighty percent of the estimates are within +/- 20 bushels per acre.  
The average error is only 4 bu/ac and having maximum under/over estimates of –81.2 and 113,
respectively.  All in all, fairly good yield estimates based on a remote sensing data collected nearly a
month before the field was harvested.
 
A couple of things should be noted from this example of spatial data mining.  First, that there is a
myriad of other ways to stratify mapped data—1) Geographic Zones, such as proximity to the field
edge; 2) Dependent Map Zones, such as areas of low, medium and high yield; 3) Data Zones, such
as areas of similar soil nutrient levels; and 4) Correlated Map Zones, such as micro terrain features
identifying small ridges and depressions.  The process of identifying useful and consistent
stratification schemes is an emerging research frontier in the spatial sciences.
 
Second, the error map is a key part in evaluating and refining prediction equations.  This point is
particularly important if the equations are to be extended in space and time.  The technique of using
the same data set to develop and evaluate the prediction equations isn’t always adequate.  The
results need to be tried at other locations and dates to verify performance.  While spatial data mining
methodology might be at hand, good science is imperative.  
 

Figure 4.2.5-3.  Stratified and whole-field predictions can be compared using statistical techniques.
 

Finally, one needs to recognize that spatial data mining is not restricted to precision agriculture but
has potential for analyzing relationships within almost any set of mapped data.  For example,
prediction models can be developed for geo-coded sales from demographic data or timber production
estimates from soil/terrain patterns.  The bottom line is that maps are increasingly seen as organized
sets of data that can be map-ematically analyzed for spatial relationships— we have only scratched
the surface.

 
 
5.0 Spatial Analysis Techniques
 
While map analysis tools might at first seem uncomfortable they simply are extensions of traditional analysis
procedures brought on by the digital nature of modern maps.  The previous section 6.0 described a conceptual
framework and some example procedures that extend traditional statistics to a spatial statistics that investigates
numerical relationships within and among mapped data layers.
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Similarly, a mathematical framework can be used to organize spatial analysis operations.  Like basic math, this
approach uses sequential processing of mathematical operations to perform a wide variety of complex map
analyses.  By controlling the order that the operations are executed, and using a common database to store the
intermediate results, a mathematical-like processing structure is developed.
 
This ‘map algebra’ is similar to traditional algebra where basic operations, such as addition, subtraction and
exponentiation, are logically sequenced for specific variables to form equations—however, in map algebra the
variables represent entire maps consisting of thousands of individual grid values.  Most of traditional mathematical
capabilities, plus extensive set of advanced map processing operations, comprise the map analysis toolbox. 
 
As with matrix algebra (a mathematics operating on sets of numbers) new operations emerge that are based on
the nature of the data.  Matrix algebra’s transposition, inversion and diagonalization are examples of the extended
set of techniques in matrix algebra. 
 
In grid-based map analysis, the spatial coincidence and juxtaposition of values among and within maps create
new analytical operation, such as coincidence, proximity, visual exposure and optimal routes.  These operators
are accessed through general purpose map analysis software available in most GIS systems.  While the specific
command syntax and mechanics differs among software packages, the basic analytical capabilities and spatial
reasoning skills used in GIS modeling and analysis form a common foundation. 
 
There are two fundamental conditions required by any spatial analysis package—a consistent data structure and
an iterative processing environment.  The earlier section 3.0 described the characteristics of the grid-based data
structure by introducing the concepts of an analysis frame, map stack, data types and display forms.  The
traditional discrete set of map features (points, lines and polygons) where extended to map surfaces that
characterize geographic space as a continuum of uniformly-spaced grid cells.  This structure forms a framework
for the map-ematics underlying GIS modeling and analysis.

Figure 5.0-1.  An iterative processing environment, analogous to basic math, is used to derive new map variables.
 
The second condition of map analysis provides an iterative processing environment by logically sequencing map
analysis operations.  This involves:
 

-       retrieval of one or more map layers from the database,
-       processing that data as specified by the user,
-       creation of a new map containing the processing results, and
-       storage of the new map for subsequent processing.  
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Each new map derived as processing continues aligns with the analysis frame so it is automatically geo-registered
to the other maps in the database.  The values comprising the derived maps are a function of the processing
specified for the input maps.  This cyclical processing provides an extremely flexible structure similar to
“evaluating nested parentheses” in traditional math.  Within this structure, one first defines the values for each
variable and then solves the equation by performing the mathematical operations on those numbers in the order
prescribed by the equation. 
 
This same basic mathematical structure provides the framework for computer-assisted map analysis.  The only
difference is that the variables are represented by mapped data composed of thousands of organized values. 
Figure 5.0-1 shows a solution for calculating the percent change in animal activity. 
 
The processing steps shown in the figure are identical to the algebraic formula for percent change except the
calculations are performed for each grid cell in the study area and the result is a map that identifies the percent
change at each location.  Map analysis identifies what kind of change (thematic attribute) occurred where (spatial
attribute).  The characterization of “what and where” provides information needed for continued GIS modeling,
such as determining if areas of large increases in animal activity are correlated with particular cover types or near
areas of low human activity.
 

5.1 Spatial Analysis Framework
 

Within this iterative processing structure, four fundamental classes of map analysis operations can be
identified.  These include:
 

-       Reclassifying Maps – involving the reassignment of the values of an existing map as a function of its
initial value, position, size, shape or contiguity of the spatial configuration associated with each map
category.

-       Overlaying Maps – resulting in the creation of a new map where the value assigned to every location
is computed as a function of the independent values associated with that location on two or more
maps.

-       Measuring Distance and Connectivity – involving the creation of a new map expressing the distance
and route between locations as straight-line length (simple proximity) or as a function of absolute or
relative barriers (effective proximity).

-       Summarizing Neighbors – resulting in the creation of a new map based on the consideration of
values within the general vicinity of target locations.

 
Reclassification operations merely repackage existing information on a single map.  Overlay operations, on
the other hand, involve two or more maps and result in the delineation of new boundaries.  Distance and
connectivity operations are more advanced techniques that generate entirely new information by
characterizing the relative positioning of map features.  Neighborhood operations summarize the conditions
occurring in the general vicinity of a location. 
 
The reclassifying and overlaying operations based on point processing are the backbone of current GIS
applications, allowing rapid updating and examination of mapped data.  However, other than the significant
advantage of speed and ability to handle tremendous volumes of data, these capabilities are similar to those
of manual map processing.  Map-wide overlays, distance and neighborhood operations, on the other hand,
identify more advanced analytic capabilities and most often do not have paper-map legacy procedures. 
 
The mathematical structure and classification scheme of Reclassify, Overlay, Distance and Neighbors form a
conceptual framework that is easily adapted to modeling spatial relationships in both physical and abstract
systems.  A major advantage is flexibility.  For example, a model for siting a new highway could be developed
as a series of processing steps.  The analysis likely would consider economic and social concerns (e.g.,
proximity to high housing density, visual exposure to houses), as well as purely engineering ones (e.g., steep
slopes, water bodies).  The combined expression of both physical and non-physical concerns within a
quantified spatial context is a major benefit. 
 
However, the ability to simulate various scenarios (e.g., steepness is twice as important as visual exposure
and proximity to housing is four times more important than all other considerations) provides an opportunity to
fully integrate spatial information into the decision-making process.  By noting how often and where the
proposed route changes as successive runs are made under varying assumptions, information on the unique
sensitivity to siting a highway in a particular locale is described.
 
In addition to flexibility, there are several other advantages in developing a generalized analytical structure for
map analysis.  The systematic rigor of a mathematical approach forces both theorist and user to carefully
consider the nature of the data being processed.  Also it provides a comprehensive format for learning that is
independent of specific disciplines or applications.  Furthermore the flowchart of processing succinctly



describes the components and weightings capsulated in an analysis.
 
This communication enables decision-makers to more fully understand the analytic process and actually
interact with weightings, incomplete considerations and/or erroneous assumptions.  These comments, in most
cases, can be incorporated and new results generated in a timely manner.  From a decision-maker’s point of
view, traditional manual techniques for analyzing maps are a distinct and separate task from the decision
itself.  They require considerable time to perform and many of the considerations are subjective in their
evaluation. 
 
In the old environment, decision-makers attempt to interpret results, bounded by vague assumptions and
system expressions of the technician.  Computer-assisted map analysis, on the other hand, engages decision-
makers in the analytic process.  In a sense, it both documents the thought process and encourages interaction
—sort of like a “spatial spreadsheet.”

 
5.2 Reclassifying Maps
 
The first, and in many ways the most fundamental class of analytical operations, involves the reclassification
of map categories.  Each operation involves the creation of a new map by assigning thematic values to the
categories of an existing map.  These values may be assigned as a function of the initial value, position,
contiguity, size, or shape of the spatial configuration of the individual categories.  Each of the reclassification
operations involves the simple repackaging of information on a single map, and results in no new boundary
delineation.  Such operations can be thought of as the purposeful "re-coloring of maps.”  
 
Figure 5.2-1 shows the result of simply reclassifying a map as a function of its initial thematic values.  For
display, a unique symbol is associated with each value.  In the figure, the Cover Type map has categories of
Open Water, Meadow and Forest.  These features are stored as thematic values 1, 2 and 3, respectively, and
displayed as separate colors.  A binary map that isolates the Open Water locations can be created by simply
assigning 0 to the areas of Meadow and Forest.  While the operation seems trivial by itself, it has map
analysis implications far beyond simply re-coloring the map categories as well soon be apparent.
 

Figure 5.2-1.  Areas of meadow and forest on a cover type map can be reclassified to isolate large areas of
open water.

 
A similar reclassification operation might involve the ranking or weighing of qualitative map categories to
generate a new map with quantitative values.  For example, a map of soil types might be assigned values that
indicate the relative suitability of each soil type for residential development. 
 
Quantitative values may also be reclassified to yield new quantitative values.  This might involve a specified
reordering of map categories (e.g., given a map of soil moisture content, generate a map of suitability levels
for plant growth).  Or, it could involve the application of a generalized reclassifying function, such as "level
slicing," which splits a continuous range of map category values into discrete intervals (e.g., derivation of a
contour map of just ten contour intervals from an elevation surface composed of thousands of specific
elevation values). 
 
Other quantitative reclassification functions include a variety of arithmetic operations involving map category
values and a specified or computed constant.  Among these operations are addition, subtraction,
multiplication, division, exponentiation, maximization, minimization, normalization and other scalar
mathematical and statistical operators.  For example, an elevation surface expressed in feet might be
converted to meters by multiplying each map value by the appropriate conversion factor of 3.28083 feet per
meter. 
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Reclassification operations can also relate to location, as well as purely thematic attributes associated with a
map.  One such characteristic is position.  An overlay category represented by a single location, for example,
might be reclassified according to its latitude and longitude.  Similarly, a line segment or area feature could be
reassigned values indicating its center or general orientation. 
 
A related operation, termed parceling, characterizes category contiguity.  This procedure identifies individual
clumps of one or more points having the same numerical value and spatially contiguous (e.g., generation of a
map identifying each lake as a unique value from a generalized map of water representing all lakes as a
single category). 
 
Another location characteristic is size.  In the case of map categories associated with linear features or point
locations, overall length or number of points might be used as the basis for reclassifying those categories. 
Similarly, an overlay category associated with a planar area might be reclassified according to its total acreage
or the length of its perimeter.  For example, a map of water types might be reassigned values to indicate the
area of individual lakes or the length of stream channels.  The same sort of technique might also be used to
deal with volume.  Given a map of depth to bottom for a group of lakes, for example, each lake might be
assigned a value indicating total water volume based on the area of each depth category. 
 

Figure 5.2-2.  A sequence of reclassification operations (renumber, clump, size and renumber) can be used to
isolate large water bodies from a cover type map.

 
Figure 5.2-2 identifies a similar processing sequence using the information derived in the previous figure 5.2-
1.  While your eye sees two distinct blobs of water on the open water map the computer only ‘sees’
distinctions by different map category values.  Since both water bodies are assigned the same value of 1 there
isn’t a categorical distinction and the computer cannot easily differentiate.
 
The Clump operation is used to identify the contiguous features as separate values—clump #1, #2 and #3. 
The Size operation is used to calculate the size of each clump—clump #1= 78 hectares, clump #2= 543 ha
and clump#3= 4 ha.  The final step uses the Renumber operation to isolate the large water body in the
northwest portion of the project area.
 
In addition to the initial value, position, contiguity, and size of features, shape characteristics also can be used
as the basis for reclassifying map categories.  Shape characteristics associated with linear forms identify the
patterns formed by multiple line segments (e.g., dendritic stream pattern).  The primary shape characteristics
associated with polygonal forms include feature integrity, boundary convexity, and nature of edge. 
 
Feature integrity relates to “intact-ness” of an area.  A category that is broken into numerous ‘fragments’
and/or contains several interior ‘holes’ is said to have less spatial integrity than ones without such violations. 
Feature integrity can be summarized as the Euler Number that is computed as the number of holes within a
feature less one short of the number of fragments which make up the entire feature.  An Euler Number of zero
indicates features that are spatially balanced, whereas larger negative or positive numbers indicate less
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spatial integrity. 
 
Convexity and edge are other shape indices that relate to the configuration of boundaries of polygonal
features.  Convexity is the measure of the extent to which an area is enclosed by its background, relative to
the extent to which the area encloses this background.  The Convexity Index for a feature is computed by the
ratio of its perimeter to its area.  The most regular configuration is that of a circle which is totally convex and,
therefore, not enclosed by the background at any point along its boundary. 
 
Comparison of a feature's computed convexity to a circle of the same area, results in a standard measure of
boundary regularity.  The nature of the boundary at each point can be used for a detailed description of
boundary configuration.  At some locations the boundary might be an entirely concave intrusion, whereas
others might be at entirely convex protrusions.  Depending on the "degree of edginess," each point can be
assigned a value indicating the actual boundary convexity at that location. 
 
This explicit use of cartographic shape as an analytic parameter is unfamiliar to most GIS users.  However, a
non-quantitative consideration of shape is implicit in any visual assessment of mapped data.  Particularly
promising is the potential for applying quantitative shape analysis techniques in the areas of digital image
classification and wildlife habitat modeling.  A map of forest stands, for example, might be reclassified such
that each stand is characterized according to the relative amount of forest edge with respect to total acreage
and the frequency of interior forest canopy gaps.  Those stands with a large proportion of edge and a high
frequency of gaps will generally indicate better wildlife habitat for many species. 
 
5.3 Overlaying Maps
 
The general class of overlay operations can be characterized as "light-table gymnastics."  These involve the
creation of a new map where the value assigned to every point, or set of points, is a function of the
independent values associated with that location on two or more existing map layers.  In location-specific
overlaying, the value assigned is a function of the point-by-point coincidence of the existing maps.  In
category-wide composites, values are assigned to entire thematic regions as a function of the values on other
overlays that are associated with the categories.  Whereas the first overlay approach conceptually involves
the vertical spearing of a set of map layers, the latter approach uses one map to identify boundaries by which
information is extracted from other maps.
 
Figure 5.3-1 shows an example of location-specific overlaying.  Here, maps of cover type and topographic
slope classes are combined to create a new map identifying the particular cover/slope combination at each
map location.  A specific function used to compute new category values from those of existing maps being
overlaid can vary according to the nature of the data being processed and the specific use of that data within a
modeling context.  Environmental analyses typically involve the manipulation of quantitative values to
generate new values that are likewise quantitative in nature.  Among these are the basic arithmetic operations
such as addition, subtraction, multiplication, division, roots, and exponentials. 
 
Functions that relate to simple statistical parameters such as maximum, minimum, median, mode, majority,
standard deviation or weighted average also can be applied.  The type of data being manipulated dictates the
appropriateness of the mathematical or statistical procedure used.  For example, the addition of qualitative
maps such as soils and land use would result in mathematically meaningless sums, since their thematic
values have no numerical relationship.  Other map overlay techniques include several that might be used to
process either quantitative or qualitative data and generate values which can likewise take either form. 
Among these are masking, comparison, calculation of diversity, and permutations of map categories.  
 



Figure 5.3-1.  Point-by point overlaying operations summarize the coincidence of two or more maps, such as
assigning a unique value identifying the cover type and slope class conditions at each location.

 
More complex statistical techniques can be applied in this manner, assuming that the inherent
interdependence among spatial observations can be taken into account.  This approach treats each map as a
variable, each point as a case, and each value as an observation.  A predictive statistical model can then be
evaluated for each location, resulting in a spatially continuous surface of predicted values.  The mapped
predictions contain additional information over traditional non-spatial procedures, such as direct consideration
of coincidence among regression variables and the ability to spatially locate areas of a given level of
prediction.  Sections 4.24 and 4.2.5 discussed considerations involved in spatial data mining derived by
statistically overlaying mapped data. 
 
An entirely different approach to overlaying maps involves category-wide summarization of values.  Rather
than combining information on a point-by-point basis, this group summarizes the spatial coincidence of entire
categories shown on one map with the values contained on another map(s).  Figure 5.3-2 contains an
example of a category-wide overlay operation.  In this example, the categories of the cover type map are
used to define an area over which the coincidental values of the slope map are averaged.  The computed
values of average slope within each category area are then assigned to each of the cover type categories. 
 
Summary statistics which can be used in this way include the total, average, maximum, minimum, median,
mode, or minority value; the standard deviation, variance, or diversity of values; and the correlation, deviation,
or uniqueness of particular value combinations.  For example, a map indicating the proportion of undeveloped
land within each of several counties could be generated by superimposing a map of county boundaries on a
map of land use and computing the ratio of undeveloped land to the total land area for each county.  Or a map
of zip code boundaries could be superimposed over maps of demographic data to determine the average
income, average age, and dominant ethnic group within each zip code.   
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Figure 5.3-2.  Category-wide overlay operations summarize the spatial coincidence of map categories, such
as generating the average slope for each cover type category.

 
As with location-specific overlay techniques, data types must be consistent with the summary procedure
used.  Also of concern is the order of data processing.  Operations such as addition and multiplication are
independent of the order of processing.  Other operations, such as subtraction and division, however, yield
different results depending on the order in which a group of numbers is processed.  This latter type of
operations, termed non-commutative, cannot be used for category-wide summaries. 

 
5.4 Establishing Distance and Connectivity

 
Measuring distance is one of the most basic map analysis techniques.  Historically, distance is defined as the
shortest straight-line between two points.  While this three-part definition is both easily conceptualized and
implemented with a ruler, it is frequently insufficient for decision-making.  A straight-line route might indicate
the distance “as the crow flies,” but offer little information for the walking crow or other flightless creature.  It is
equally important to most travelers to have the measurement of distance expressed in more relevant terms,
such as time or cost. 
 
Proximity establishes the distance to all locations surrounding a point— the set of shortest straight-lines
among groups of points.  Rather than sequentially computing the distance between pairs of locations,
concentric equidistance zones are established around a location or set of locations (figure 5.4-1).  This
procedure is similar to the wave pattern generated when a rock is thrown into a still pond.  Each ring indicates
one unit farther away— increasing distance as the wave moves away.  Another way to conceptualize the
process is nailing one end of a ruler at a point and spinning it around.  The result is a series of data zones
emanating from a location and aligning with the ruler’s tic marks.
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Figure 5.4-1.  Proximity identifies the set of shortest straight-lines among groups of points (distance zones).
 
However, nothing says proximity must be measured from a single point.  A more complex proximity map would
be generated if, for example, all locations with houses (set of points) are simultaneously considered target
locations (left side of figure 5.4-2). 
 
In effect, the procedure is like throwing a handful of rocks into pond.  Each set of concentric rings grows until
the wave fronts from other locations meet; then they stop.  The result is a map indicating the shortest straight-
line distance to the nearest target area (house) for each non-target area.  In the figure, the red tones indicate
locations that are close to a house, while the green tones identify areas that are far from a house. 
 
In a similar fashion, a proximity map to roads is generated by establishing data zones emanating from the
road network—sort of like tossing a wire frame into a pond to generate a concentric pattern of ripples (middle
portion of figure 5.4-2).  The same result is generated for a set of areal features, such as sensitive habitat
parcels (right side of figure 5.4-2).
 
It is important to note that proximity is not the same as a buffer.  A buffer is a discrete spatial object that
identifies areas that are within a specified distance of map feature; all locations within a buffer are considered
the same.  Proximity is a continuous surface that identifies the distance to a map feature(s) for every location
in a project area.  It forms a gradient of distances away composed of many map values; not a single spatial
object with one characteristic distance away.
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Figure 5.4-2.  Proximity surfaces can be generated for groups of points, lines or polygons identifying the
shortest distance from all location to the closest occurrence.

 
The 3D plots of the proximity surfaces in figure 5.4-2 show detailed gradient data and are termed accumulated
surfaces.  They contain increasing distance values from the target point, line or area locations displayed as
colors from red (close) to green (far).  The starting features are the lowest locations (black= 0) with hillsides of
increasing distance and forming ridges that are equidistant from starting locations.
 
In many applications, however, the shortest route between two locations might not always be a straight-line (or
even a slightly wiggling set of grid steps).  And even if it is straight, its geographic length may not always
reflect a traditional measure of distance.  Rather, distance in these applications is best defined in terms of
“movement” expressed as travel-time, cost or energy that is consumed at rates that vary over time and
space.  Distance modifying effects involve weights and/or barriers— concepts that imply the relative ease of
movement through geographic space might not always constant. 
 
Effective proximity responds to intervening conditions or barriers. There are two types of barriers that are
identified by their effects— absolute and relative.  Absolute barriers are those completely restricting movement
and therefore imply an infinite distance between the points they separate.  A river might be regarded as an
absolute barrier to a non-swimmer.  To a swimmer or a boater, however, the same river might be regarded as
a relative barrier identifying areas that are passable, but only at a cost which can be equated to an increase in
geographical distance.  For example, it might take five times longer to row a hundred meters than to walk that
same distance. 
 
In the conceptual framework of tossing a rock into a pond, the waves can crash and dissipate against a jetty
extending into the pond (absolute barrier; no movement through the grid spaces).  Or they can proceed, but at
a reduced wavelength through an oil slick (relative barrier; higher cost of movement through the grid spaces). 
The waves move both around the jetty and through the oil slick with the ones reaching each location first
identifying the set of shortest, but not necessarily straight-lines among groups of points.  
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Figure 5.4-3.  Effective Proximity surfaces consider the characteristics and conditions of movement throughout
a project area.

 
The shortest routes respecting these barriers are often twisted paths around and through the barriers.  The
GIS database enables the user to locate and calibrate the barriers; the wave-like analytic procedure enabling
the computer to keep track of the complex interactions of the waves and the barriers.  For example, figure 5.4-
3 shows the effective proximity surfaces for the same set of starter locations shown in the previous figure 5.4-
2 expressed as simple proximity.
 
The point features in the left inset respond to treating flowing water as an absolute barrier to movement.  Note
that the distance to the nearest house is very large in the center-right portion of the project area (green)
although there is a large cluster of houses just to the north.  Since the water feature can’t be crossed, the
closest houses are a long distance to the south.
 
Terrain steepness is used in the middle inset to illustrate the effects of a relative barrier.  Increasing slope is
coded into a friction map of increasing impedance values that make movement through steep grid cells
effectively farther away than movement through gently sloped locations.  Both absolute and relative barriers
are applied in determining effective proximity sensitive areas in the right inset. 
 
Compare these results in figures 5.4-2 and 5.4-3 and note the dramatic differences between the concept of
distance “as the crow flies” (simple proximity) and “as the crow walks” (effective proximity).  In many practical
applications, the assumption that all movement occurs in straight lines disregards reality.  When traveling by
trains, planes, automobiles, and feet there are plenty of bends, twists, accelerations and decelerations due to
characteristics (weights) and conditions (barriers) of the movement. 
 
Figure 5.4-4 illustrates how the splash algorithm propagates distance waves to generate an effective proximity
surface.  The Friction Map locates the absolute (blue/water) and relative (light blue= gentle/easy through red=
steep/hard) barriers.  As the distance wave encounters the barriers their effects on movement are
incorporated and distort the symmetric pattern of simple proximity waves.  The result identifies the “shortest,
but not necessarily straight” distance connecting the starting location with all other locations in a project area. 
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Figure 5.4-4. Effective Distance waves are distorted as they encounter absolute and relative barriers,
advancing faster under easy conditions and slower in difficult areas.

 
Note that the absolute barrier locations (blue) are set to infinitely far away and appear as pillars in the 3-D
display of the final proximity surface.  As with simple proximity, the effective distance values form a bowl-like
surface with the starting location at the lowest point (zero away from itself) and then ever-increasing distances
away (upward slope).  With effective proximity, however, the bowl is not symmetrical and is warped with
bumps and ridges that reflect intervening conditions— the greater the impedance the greater the upward
slope of the bowl.  In addition, there can never be a depression as that would indicate a location that is closer
to the starting location than everywhere around it.  Such a situation would violate the ever-increasing
concentric rings theory and is impossible.
 
The past series of four sections have focused on how simple distance is extended to effective proximity and
movement in a modern GIS.  Considerable emphasis was given to the calculations involving a propagating
wave of increasing distance (algorithm) instead of our more familiar procedures of measuring with a ruler
(manual) or solving the Pythagorean Theorem (mathematical). 
 
While the computations of simple and effective proximity might be unfamiliar and appear complex, once
programmed they are easily and quickly performed by modern computers.  In addition, there is a rapidly
growing wealth of digital data describing conditions that impact movement in the real world.  It seems that all
is in place for a radical rethinking and expression of distance—computers, programs and data are poised.
 
However, what seems to be the major hurdle for adoption of this new way of spatial thinking lies in the
experience base of potential users.  Our paper map legacy suggests that the shortest straight line between
two points is the only way to investigate spatial context relationships and anything else is wrong (or at least
uncomfortable). 
 
This restricted perspective has lead most contemporary GIS applications to employ simple distance and
buffers.  While simply automating traditional manual procedures might be comfortable, it fails to address the
reality of complex spatial problems or fully engage the potential of GIS technology. 
 
The first portion of figure 5.4-5 identifies the basic operations described in the previous sections.  These
procedures have set the stage for even more advanced distance operations, as outlined in the lower portion of
the figure.  For example, a Guiding Surface can be used to constrain movement up, down or across a
surface.  For example, the algorithm can check an elevation surface and only proceed to downhill locations
from a feature such as roads to identify areas potentially affected by the wash of surface chemicals applied.
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The simplest Directional Effect involves compass directions, such as only establishing proximity in the
direction of a prevailing wind.  A more complex directional effect is consideration of the movement with respect
to an elevation surface—a steep uphill movement might be considered a higher friction value than movement
across a slope or downhill.  This consideration involves a dynamic barrier that the algorithm must evaluate for
each point along the wave front as it propagates.
 

 

Figure 5.4-5.  The basic set of distance operations can be extended by considering the dynamic nature of the
implied movement.

 
Accumulation Effects account for wear and tear as movement continues.  For example, a hiker might easily
proceed through a fairly steep uphill slope at the start of a hike but balk and pitch a tent at the same slope
encountered ten hours into a hike.  In this case, the algorithm merely “carries” an equation that increases the
static/dynamic friction values as the movement wave front progresses.  A natural application is to have a user
enter their gas tank size and average mileage so it would automatically suggest refilling stops along a
proposed route.
 
A related consideration, Momentum Effects, tracks the total effective distance but in this instance it calculates
the net effect of up/downhill conditions that are encountered.  It is similar to a marble rolling over an undulating
surface—it picks up speed on the downhill stretches and slows down on the uphill ones. 
 
The remaining three advanced operations interact with the accumulation surface derived by the wave front’s
movement.  Recall that this surface is analogous to football stadium with each tier of seats being assigned a
distance value indicating increasing distance from the field.  In practice, an accumulation surface is a twisted
bowl that is always increasing but at different rates that reflect the differences in the spatial patterns of relative
and absolute barriers. 
 
Stepped Movement allows the proximity wave to grow until it reaches a specified location, and then restart at
that location until another specified location and so on.  This generates a series of effective proximity facets
from the closest to the farthest location.  The steepest downhill path over each facet, as you might recall,
identifies the optimal path for that segment.  The set of segments for all of the facets forms the optimal path
network connecting the specified points. 
 
The direction of optimal travel through any location in a project area can be derived by calculating the Back
Azimuth of the location on the accumulation surface.  Recall that the wave front potentially can step to any of
its eight neighboring cells and keeps track of the one with the least friction to movement.  The aspect of the
steepest downhill step (N, NE, E, SE, S, SW, W or NW) at any location on the accumulation surface therefore
indicates the direction of the best path through that location.  In practice there are two directions—one in and
one out for each location.  
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An even more bazaar extension is the interpretation of the 1st and 2nd Derivative of an accumulation surface. 
The 1st derivative (rise over run) identifies the change in accumulated value (friction value) per unit of
geographic change (cell size).  On a travel-time surface, the result is the speed of optimal travel across the
cell.  The second derivative generates values whether the movement at each location is accelerating or
decelerating.
 
Chances are these extensions to distance operations seem a bit confusing, uncomfortable, esoteric and
bordering on heresy.  While the old “straight line” procedure from our paper map legacy may be straight
forward, it fails to recognize the reality that most things rarely move in straight lines. 
 
Effective distance recognizes the complexity of realistic movement by utilizing a procedure of propagating
proximity waves that interact with a map indicating relative ease of movement.  Assigning values to relative
and absolute barriers to travel enable the algorithm to consider locations to favor or avoid as movement
proceeds.  The basic distance operations assume static conditions, whereas the advanced ones account for
dynamic conditions that vary with the nature of the movement.
 
So what’s the take home from the discussions involving effective distance?  Two points seem to define the
bottom line.  First, that the digital map is revolutionizing how we perceive distance, as well as how calculate it. 
It is the first radical change since Pythagoras came up with his theorem a couple of thousand years ago. 
Secondly, the ability to quantify effective distance isn’t limited by computational power or available data; rather
it is most limited by difficulties in understanding accepting the concept. 
 
5.5 Summarizing Neighbors

 
Analysis of spatially defined neighborhoods involves summarizing the context of surrounding locations.  Four
steps are involved in neighborhood analysis— 1) define the neighborhood, 2) identify map values within the
neighborhood, 3) summarize the values and 4) assign the summary statistic to the focus location.  The
process is then repeated for every location in a project area. 
 
Summarizing Neighbors techniques fall into two broad classes of analysis—Characterizing Surface
Configuration and Summarizing Map Values (see figure 5.5-1).  It is important to note that all neighborhood
analyses involve mathematical or statistical summary of values on an existing map that occur within a roving
window.  As the window is moved throughout a project area, the summary value is stored for the grid location
at the center of the window resulting in a new map layer reflecting neighboring characteristics or conditions. 

Figure 5.5-1.  The two fundamental classes of neighborhood analysis operations involve Characterizing
Surface Configuration and Summarizing Map Values.

 
The difference between the two classes is in the treatment of the values—implied surface configuration or
direct numerical summary.  For example, figure 5.5-2 shows a small portion of a typical elevation data set,
with each cell containing a value representing its overall elevation.  In the highlighted 3x3 window there are
eight individual slopes, as shown in the calculations on the right side of the figure.  The steepest slope in the
window is 52% formed by the center and the NW neighboring cell.  The minimum slope is 11% in the NE
direction. 
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Figure 5.5-2.  At a location, the eight individual slopes can be calculated for a 3x3 window and then
summarized for the maximum, minimum, median and average slope.

 
But what about the general slope throughout the entire 3x3 analysis window?  One estimate is 29%, the
arithmetic average of the eight individual slopes.  Another general characterization could be 30%, the median
of slope values.  But let's stretch the thinking a bit more.  Imagine that the nine elevation values become balls
floating above their respective locations, as shown in Figure 5.5-3.  Mentally insert a plane and shift it about
until it is positioned to minimize the overall distances from the plane to the balls.  The result is a "best-fitted
plane" summarizing the overall slope in the 3x3 window. 
 
 

Figure 5.5-3.  Best-Fitted Plane and Vector Algebra can be used to calculate overall slope.
 
The algorithm is similar to fitting a regression line to a set of data points in two-dimensional space.  However
in this case, it’s a plane in three-dimensional space.  There is an intimidating set of equations involved, with a
lot of Greek letters and subscripts to "minimize the sum of the squared deviations" from the plane to the
points.  Solid geometry calculations, based on the plane's "direction cosines," are used to determine the slope
(and aspect) of the plane. 
  
Another procedure for fitting a plane to the elevation data uses vector algebra, as illustrated in the right portion
of figure 5.5-3.  In concept, the mathematics draws each of the eight slopes as a line in the proper direction
and relative length of the slope value (individual vectors).  Now comes the fun part.  Starting with the NW line,
successively connect the lines as shown in the figure (cumulative vectors).  The civil engineer will recognize
this procedure as similar to the latitude and departure sums in "closing a survey transect."  The length of the
“resultant vector” is the slope (and direction is the aspect).

 
There is a lot more to neighborhood analysis than just characterizing the lumps and bumps of the terrain. 
Figure 5.5-4 shows a direct numerical summary identifying the number of customers within a quarter of a mile
of every location within a project area.   
 
The procedure uses a roving window to collect neighboring map values and compute the total number of
customers in the neighborhood.  In this example, the window is positioned at a location that computes a total
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of 91 customers within quarter-mile. 
 

Figure 5.5-4  Approach used in deriving a Customer Density surface from a map of customer locations.
 
Note that the input data is a discrete placement of customers while the output is a continuous surface showing
the gradient of customer density.  While the example location does not even have a single customer, it has an
extremely high customer density because there are a lot of customers surrounding it. 
 
The map displays on the right of the figure show the results of the processing for the entire area.  A traditional
vector GIS forces the result into a set of 2D contour intervals stored as discrete polygon spatial objects—1-10
customer range, 10-20, 20-30, etc.  The 3D surface plot, on the other hand, shows all of the calculated spatial
detail—mountains of high customer density and valleys of low density.  An importance difference is that the
vector representation aggregates the results, whereas the grid representation contains all of the detailed
information.
 
Figure 5.5-5 illustrates how the information was derived.  The upper-right map is a display of the discrete
customer locations of the neighborhood of values surrounding the “focal” cell.  The large graphic on the right
shows this same information with the actual map values superimposed.  Actually, the values are from an Excel
worksheet with the column and row totals indicated along the right and bottom margins.  The row (and
column) sum identifies the total number off customers within the window—91 total customers within a quarter-
mile radius. 
 
This value is assigned to the focal cell location as depicted in the lower-left map.  Now imagine moving the
‘Excel window’ to next cell on the right, determine the total number of customers and assign the result—then
on to the next location, and the next, and the next, etc.  The process is repeated for every location in the
project area to derive the customer density surface.
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Figure 5.5-5.  Calculations involved in deriving customer density.
 
The processing summarizes the map values occurring within a location’s neighborhood (roving window).  In
this case the resultant value was the sum of all the values.  But summaries other than Total can be used
—Average, StDev, CoffVar, Maximum, Minimum, Median, Majority, Minority, Diversity, Deviation, Proportion,
Custom Filters, and Spatial Interpolation.  The remainder of this series will focus on how these techniques can
be used to derive valuable insight into the conditions and characteristics surrounding locations—analyzing
their spatially-defined neighborhoods.

 
 
6.0 GIS Modeling Frameworks
 
It is commonly recognized that there are three essential elements to GIS— data, operations and applications.  To
use the technology a set of digital maps, an analytic engine to process the maps, and interesting problems to
solve are needed.  However, not all users have the same view of the relative importance of the three elements. 
Some have a data-centric perspective, as they prepare individual data layers and/or assemble the
comprehensive databases forming the cornerstone of GIS.  Others are operations-centric and are locked in on
refining and expanding the GIS toolbox of processing and display capabilities.  A third group is applications-
centric and sees the portentous details of data and operations as merely impediments to solving real-world
problems.  Such is the occasionally fractious fraternity of GIS. 
 
In the early years, data and software development dominated the developing field.  As GIS has matured, the focus
has extended to innovative ways of addressing complex spatial problems beyond simply mapping and geo-query. 
As a result, attention is increasingly directed toward the assumptions and linkages embedded in GIS models that
weave data layers into logical expressions of spatial interrelationships that solve pressing problems.  From this
perspective there are three dominant GIS modeling frameworks— Suitability, Decision Support and Statistical
modeling. 

 
 

6.1 Suitability Modeling
 
A simple habitat model can be developed using only reclassify and overlay operations.  For example, a Hugag
is a curious mythical beast with strong preferences for terrain configuration:  prefers low elevations, prefers
gentle slopes, and prefers southerly aspects. 
 

6.1.1 Binary Model
 
A binary habitat model of Hugag preferences is the simplest to conceptualize and implement.  It is
analogous to the manual procedures for map analysis popularized in the landmark book Design with
Nature, by Ian L. McHarg, first published in 1969.  This seminal work was the forbearer of modern
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map analysis by describing an overlay procedure involving paper maps, transparent sheets and
pens. 
 
For example, if avoiding steep slopes was an important decision criterion, a draftsperson would tape
a transparent sheet over a topographic map, delineate areas of steep slopes (contour lines close
together) and fill-in the precipitous areas with an opaque color.  The process is repeated for other
criteria, such as the Hugag’s preference to avoid areas that are northerly-oriented and at high
altitudes.  The annotated transparencies then are aligned on a light-table and the transparent areas
showing through identify acceptable habitat for the animal.  
 
An analogous procedure can be implemented in a computer by using the value 0 to represent the
unacceptable areas (opaque) and 1 to represent acceptable habit (clear).  As shown in figure 6.1-1,
an Elevation map is used to derive a map of terrain steepness (Slope_map) and orientation
(Aspect_map).  A value of 0 is assigned to locations Hugags want to avoid—
 

-       Greater than 1800 feet elevation = 0         …too high
-       Greater than 30% slope = 0                       …too steep
-       North, northeast and northwest = 0           …to northerly

 
All other locations are assigned a value of 1 to indicate acceptable areas.  The individual binary habit
maps are shown displays on the right side of the figure.  The dark red portions identify unacceptable
areas that are analogous to McHarg’s opaque colored areas delineated on otherwise clear
transparencies. 
 
A Binary Suitability map of Hugag habitat is generated by multiplying the three individual binary
preference maps.  If a zero is encountered on any of the map layers, the solution is sent to zero (bad
habitat).  For the example location on the right side of the figure, the preference string of values is 1 *
1 * 0 = 0 (Bad).  Only locations with 1 * 1 * 1 = 1 (Good) identify areas without any limiting factors—
good elevations, good slopes and good orientation.  These areas are analogous to the clear areas
showing through the stack of transparencies on a light-table.
 
 

Figure 6.1-1.  Binary maps representing Hugag habitat preferences are coded as 1= good and 0= bad.
 
While this procedure mimics manual map processing, it is limited in the information it generates.  The
solution is binary and only differentiates acceptable and unacceptable locations.  But an area that is
totally bad (0 * 0 * 0 = 0) is significantly different from one that is just limited by one factor (1 * 1 * 0 =
0) as two factors are acceptable, thus making it nearly good.
 
6.1.2 Ranking Model
 
The right side of figure 6.1.2-1 shows a Ranking Suitability map of Hugag habitat.  In this instance the
individual binary maps are simply added together for a count of the number of acceptable locations. 
Note that the areas of perfectly acceptable habitat (light grey) on both the binary and ranking
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suitability maps have the same geographic pattern.  However, the unacceptable area on the ranking
suitability map contains values 0 through 2 indicating how many acceptable factors occur at each
location.  The zero value for the area in the northeastern portion of the map identifies very bad
conditions (0 + 0 + 0= 0).  The example location, on the other hand, is nearly good (1 + 1 + 0= 2).
 

Figure 6.1.2-1.  The binary habitat maps are multiplied together to create a Binary Suitability map
(good or bad) or added together to create a Ranking Suitability map (bad, marginal, better or best).

 
The ability to report the degree of suitability stimulated a lot of research into using additive colors for
the manual process.  Physics suggests that if blue, green and red are used as semi-opaque colors on
the transparencies, the resulting color combinations should be those indicated in the left side of the
table in figure 6.1.2-2.  However, in practice the technique collapses to an indistinguishable brownish-
purple glob of colors when three or more map layers are overlaid.
 

Figure 6.1.2-2.  The sum of a binary progression of values on individual map layers results in a
unique value for each combination.

 
Computer overlay, on the other hand, can accurately differentiate all possible combinations as shown
on the right side of the figure.  The trick is characterizing the unacceptable areas on each map layer
as a binary progression of values—1, 2, 4, 8, 16, 32, etc.  In the example in the figure, 1 is assigned
to areas that are too high, 2 assigned to areas that are too steep and 4 assigned to areas that are too
northerly oriented.  Adding a binary progression of values each combination of values results in a
unique sum.  The result is termed a Ranking Combination suitability map. 
 
In the three-map example, all possible combinations are contained in the number range 0 (best) to 7
(bad) as indicated.  A value of 4 can only result from a map layer sequence of 0 + 0 + 4 that
corresponds to OK Elevation, OK Steepness and Bad Aspect.  If a fourth map was added to the
stack, its individual binary map value for unacceptable areas would be 8 and the resulting range of
values for the four map-stack would be from 0 (best) to 15 (bad) with a unique value for each
combination of habitat conditions.

 
6.1.3 Rating Model

 
The binary, ranking and ranking combinations approaches to suitability mapping share a common
assumption—that each habitat criterion can be discretely classified as either acceptable or
unacceptable.  However, suppose Hugags are complex animals and actually perceive a continuum of
preference.  For example, their distain for high elevations isn’t a sharp boundary at 1800 feet.  Rather
they might strongly prefer low land areas, venture sometimes into transition elevations but absolutely
detest the higher altitudes.
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Figure 6.1.3-1 shows a Rating Suitability map of Hugag habitat.  In this case the three criteria maps
are graded on a scale of 1 (bad) to 9 (best).  For example, the elevation-based conditions are
calibrated as—
 

-       1 (bad) =           > 1800 feet
-       3 (marginal) = 1400-1800 feet
-       5 (OK) =            1250-1400 feet
-       7 (better) =        900-1250 feet
-       9 (best) =          0-900 feet

 
The other two criteria of slope and orientation are similarly graded on the same scale as shown in the
figure. 

Figure 6.1.3-1.  A Rating Suitability map is derived by averaging a series of “graded” maps
representing individual habitat criteria.

 
This process is analogous to a professor grading student exams for an overall course grade.  Each
map layer is like a test, each grid cell is like a student and each map value at a location is like the
grade for test.  To determine the overall grade for a semester a professor averages the individual test
scores.  An overall habitat score is calculated in a similar manner—take the average of the three
calibrated map layers.
 
The example location in the example is assigned an average habitat value of 5.67 that is somewhere
between OK and Better habitat conditions on the 1 (bad) to 9 (best) suitability scale.  The rating was
derived by averaging the three calibrated values of—
 

9          …9 assigned “Best” elevation condition of between 0 and 900 feet
7          …7 assigned “Better” steepness condition of between 5 and 15 %
1          …1 (northwest) assigned “Bad” aspect condition

 
17 / 3 = 5.67 average habitat rating        ...slightly better than OK

 
Note the increased information provided by a rating suitability map.  All three of the extended
techniques (ranking, ranking combination and rating) consistently identify the completely bad area in
the northeast and southeast.  What changes with the different techniques is the information about
subtle differences in the marginal through better areas.  The rating suitability map contains the most
information as it uses a consistent scale and reports habitat “goodness” values to the decimal point.
 
That brings the discussion full circle and reinforces the concept of a map-ematical framework for
analyzing spatial relationships.  Generally speaking, map analysis procedures such as Suitability
Modeling take full advantage of the digital nature of maps to provide more information than traditional
manual techniques supporting better decision-making. 

 
6.2 Decision Support Modeling
 
In the past, electric transmission line siting required thousands of hours around paper maps, sketching
hundreds of possible paths, and then assessing their feasibility by ‘eyeballing the best route.’ The tools of the
trade were a straight edge and professional experience.  This manual approach capitalizes on expert
interpretation and judgment, but it is often criticized as a closed process that lacks a defendable procedure
and fails to engage the perspectives of external stakeholders in what constitutes a preferred route.
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6.2.1 Routing Procedure
 
The use of the Least Cost Path (LCP) procedure for identifying an optimal route based on user-
defined criteria has been used extensively in GIS applications for siting linear features and corridors. 
Whether applications involve movement of elk herds, herds of shoppers, or locating highways,
pipelines or electric transmission lines, the procedure is fundamentally the same— 1) develop a
discrete cost surface that indicates the relative preference for routing at every location in a project
area, 2) generate an accumulated cost surface characterizing the optimal connectivity from a starting
location (point, line or area) to all other locations based on the  intervening relative preferences, and
3) identify the path of least resistance (steepest downhill path) from a desired end location along the
accumulated surface. 
 
Figure 6.2.1-1 schematically shows a flowchart of the GIS-based routing procedure for a hypothetical
example if siting an electric transmission line that avoids areas that have high housing density, far
from roads, near or within sensitive areas and have high visual exposure to houses. 

 

Figure 6.2.1-1.  GIS-based routing uses three steps to establish a discrete map of the relative
preference for siting at each location, generate an accumulated preference surface from a starting
location(s) and derive the optimal route from an end point as the path of least resistance guided by

the surface.
 
These four criteria are shown as rows in the left portion of the flowchart in the figure.  The Base Maps
are field collected data such as elevation, sensitive areas, roads and houses.  Derived Maps use
computer processing to calculate information that is too difficult or even impossible to collect, such as
visual exposure, proximity and density.  The discrete Preference Maps translate this information into
decision criteria.  The calibration forms maps that are scaled from 1 (most preferred—favor siting,
grey areas) to 9 (least preferred—avoid siting, red areas) for each of the decision criteria.
 
The individual cost maps are combined into a single map by averaging the individual layers.  For
example, if a grid location is rated 1 in each of the four cost maps, its average is 1 indicating an area
strongly preferred for siting.  As the average increases for other locations it increasingly encourages
routing away from them.  If there are areas that are impossible or illegal to cross these locations are
identified with a “null value” that instructs the computer to never traverse these locations under any
circumstances.
 
6.2.2 Identifying Corridors
 
The technique generates accumulation surfaces from both the Start and End locations of the
proposed power line.  For any given location in the project area one surface identifies the best route
to the start and the other surface identifies the best route to the end.  Adding the two surfaces
together identifies the total cost of forcing a route through every location in the project area.
 
The series of lowest values on the total accumulation surface (valley bottom) identifies the best route.
 The valley walls depict increasingly less optimal routes.  The red areas in figure 6.2.2-1 identify all of
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locations that within five percent of the optimal path.  The green areas indicate ten percent sub-
optimality.
 

Figure 6.2.2-1.  The sum of accumulated surfaces is used to identify siting corridors as low points on
the total accumulated surface.

 
The corridors are useful in delineating boundaries for detailed data collection, such as high resolution
aerial photography and ownership records.  The detailed data within the macro-corridor is helpful in
making slight adjustments in centerline design, or as we will see next month in generating and
assessing alternative routes. 
 
6.2.3 Calibrating Routing Criteria
 
Implementation of the LCP routing procedure provides able room for interpretation and relative
preferences.  For example, one of the criteria in the routing model seeks to avoid locations having
high visual exposure to houses.  But what constitutes high visual exposure— 5 or 50 houses visually
impacted?  Are there various levels of increasing high exposure that correspond to decreasing
preference?  Is “avoiding high visual exposure” more or less important than “avoiding locations near
sensitive areas.”  If so, how much more (or less) important?
 
The answers to these questions are what tailor a model to the specific circumstances of its application
and the understanding and values of the decision participants.  The tailoring involves two related
categories of parameterization—calibration and weighting. 
 
Calibration refers to establishing a consistent scale from 1 (most preferred) to 9 (least preferred) for
rating each map layer used in the solution.  Figure 6.2.3-1 shows the result for the four decision
criteria used in the routing example. 
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Figure 6.2.3-1.  The Delphi Process uses structured group interaction to establish a consistent rating
for each map layer.

 
The Delphi Process, developed in the 1950s by the Rand Corporation, is designed to achieve
consensus among a group of experts.  It involves directed group interaction consisting of at least
three rounds.  The first round is completely unstructured, asking participants to express any opinions
they have on calibrating the map layers in question.  In the next round the participants complete a
questionnaire designed to rank the criteria from 1 to 9.  In the third round participants re-rank the
criteria based on a statistical summary of the questionnaires.  “Outlier” opinions are discussed and
consensus sought.
 
The development and summary of the questionnaire is critical to Delphi.  In the case of continuous
maps, participants are asked to indicate cut-off values for the nine rating steps.  For example, a cutoff
of 4 (implying 0-4 houses) might be recorded by a respondent for Housing Density preference level 1
(most preferred); a cut-off of 12 (implying a range of 4-12) for preference level 2; and so forth.  For
discrete maps, responses from 1 to 9 are assigned to each category value.  The same preference
value can be assigned to more than one category, however there has to be at least one condition
rated 1 and another rated 9.  In both continuous and discrete map calibration, the median, mean,
standard deviation and coefficient of variation for group responses are computed for each question
and used to assess group consensus and guide follow-up discussion.     
 
6.2.4 Weighting Criteria Maps
 
Weighting of the map layers is achieved using a portion of the Analytical Hierarchy Process (AHP)
developed in the early 1980s as a systematic method for comparing decision criteria.  The procedure
involves mathematically summarizing paired comparisons of the relative importance of the map
layers.  The result is a set map layer weights that serves as input to a GIS model. 
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Figure 6.2.4-1.  The Analytical Hierarchy Process uses direct comparison of map layers to derive their
relative importance.

 
In the routing example, there are four map layers that define the six direct comparison statements
identified in figure 51 (#pairs = (N * (N – 1) / 2) = 4 * 3 / 2= 6 statements) as shown in figure 6.2.4-1. 
Members of the group independently order the statements so they are true, then record the relative
level of importance implied in each statement.  The importance scale is from 1 (equally important) to 9
(extremely more important).
 
This information is entered into the importance table a row at a time.  For example, the first statement
in the figure views avoiding locations of high Visual Exposure (VE) as extremely more important
(importance level= 9) than avoiding locations close to Sensitive Areas (SA).   The response is entered
into table position row 2, column 3 as shown.  The reciprocal of the statement is entered into its
mirrored position at row 3, column 2.  Note that the last weighting statement is reversed so its
importance value is recorded at row 5, column 4 and its reciprocal recorded at row 4, column 5.  
 
Once the importance table is completed, the map layer weights are calculated.  The procedure first
calculates the sum of the columns in the matrix, and then divides each entry by its column sum to
normalize the responses.  The row sum of the normalized responses derives the relative weights that,
in turn, are divided by minimum weight to express them as a multiplicative scale. 
 
The relative weights for a group of participants are translated to a common scale then averaged
before expressing them as a multiplicative scale.  Alternate routes are generated by evaluating the
model using weights derived from different group perspectives. 
 
6.2.5 Transmission Line Routing Experience
 
Figure 6.2.5-1 shows the results of applying different calibration and weighting information to derive
alternative routes for a routing application in central Georgia.  Four routes and corridors were
generated emphasizing different perspectives—Built environment (community concerns), Natural
environment (environmental), Engineering (constructability) and the Simple un-weighted average of
all three group perspectives.
 
While all four of the routes use the same criteria layers, the differences in emphasis for certain layers
generate different routes/corridors that directly reflect differences in stakeholder perspective.  Note
the similarities and differences among the Built, Natural, Engineering and un-weighted routes.  The
bottom line is that the procedure identified constructible alternative routes that can be easily
communicated and discussed. 
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Figure 6.2.5-1.  Alternate routes are generated by evaluating the model using weights derived from
different group perspectives. (Courtesy of Photo Science and Georgia Transmission Corporation)

 
The final route is developed by an experienced transmission line siting team who combine alternative
route segments for a preferred route.  Engineers make slight centerline realignments responding the
detailed field surveys along the preferred, and then design the final pole placements and construction
estimates for the final route.
 
The ability to infuse different perspectives into the routing process is critical in gaining stakeholder
involvement and identifying siting sensitivity.  It acts at the front end of the routing process to explicitly
identify routing corridors that contain constructible routes reflecting different perspectives that guide
siting engineer deliberations.  Also, the explicit nature of the methodology tends to de-mystify the
routing process by clearly identifying the criteria and how it is evaluated.
 
In addition, the participatory process 1) encourages interaction among various perspectives, 2)
provides a clear and structured procedure for comparing decision elements, 3) involves quantitative
summary of group interaction and dialog, 4) identifies the degree of group consensus for each
decision element, 5) documents the range of interpretations, values and considerations surrounding
decision criteria, and 6) generates consistent, objective and defendable parameterization of GIS
models. 

 
The use of Delphi and AHP techniques provides a structure for infusing diverse perspectives into
calibrating and weighting criteria maps used in GIS-based routing.  Traditional siting techniques rely
on unstructured discussions that often seem to mystify the routing process by not clearly identifying
the criteria used or how it was derived and evaluated.  The approach described in this paper is
objective, consistent and comprehensive and encourages multiple perspectives for generating
alternative routes as well as thoroughly documenting the decision process itself.  The general
approach is readily applicable to other siting applications of linear features, such as pipelines and
roads. 

 
6.3 Statistical Modeling
 
Site-specific management, often referred to as Precision Farming or Precision Agriculture, is about doing the
right thing, in the right way, at the right place and time.  It involves assessing and reacting to field variability
and tailoring management actions, such as fertilization levels, seeding rates and variety selection, to match
changing field conditions.  It assumes that managing field variability leads to cost savings, production
increases and better stewardship of the land.  Site-specific management isn’t just a bunch of pretty maps, but
a set of new procedures that link mapped variables to appropriate management actions.
 
Several of the procedures, such as map similarity, level-slicing, clustering and regression, used in precision
agriculture are discussed thoroughly in section 4.0, Spatial Statistics Techniques.  The following discussion
outlines how the analytical techniques can be used to relate crop yield to driving variables like soil nutrient
levels that support management action.
 

6.3.1 Elements of Precision Agriculture
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To date, much of the analysis of yield maps have been visual interpretations.  By viewing a map, all
sorts of potential relationships between yield variability and field conditions spring to mind. These
‘visceral visions’ and explanations can be drawn through the farmer’s knowledge of the field— "…this
area of low yield seems to align with that slight depression," or "…maybe that’s where all those weeds
were," or "…wasn’t that where the seeder broke down last spring?" 
 
Data visualization can be extended by GIS analysis that directly links yield maps to field conditions. 
This processing involves three levels— cognitive, analysis and synthesis.  At the cognitive level
(termed desktop mapping) computer maps of variables, such as crop yield and soil nutrients, are
generated.  These graphical descriptions form the foundation of site-specific management.  The
analysis level uses the GIS’s analytical toolbox to discover relationships among the mapped
variables.  This step is analogous to a farmer’s visceral visions of relationships, but uses the
computer to establish mathematical and statistical connections.  To many farmers this step is an
uncomfortable leap of scientific faith from pretty maps to pure, dense technical gibberish. 
 
However, map analysis greatly extends data visualization and can more precisely identify areas of
statistically high yield and correlate them to a complex array of mapped field conditions.  The
synthesis level of processing uses GIS modeling to translate the newly discovered relationships into
management actions (prescriptions).  The result is the prescription map needed by intelligent
implements in guiding variable rate control of field inputs.  Admittedly, the juvenile science of site-
specific management is a bit imprecise, and raises several technical issues.  In less than two
decades, however, the approach has placed millions of acres world-wide under site-specific
management, as well as completely altering equipment with GPS and variable-rate hardware.
 
The precision agriculture process can be viewed as four steps: Data Logging, Point Sampling, Data
Analysis and Prescription Modeling as depicted in figure 6.3.1-1. Data logging continuously monitors
measurements, such as crop yield, as a tractor moves through a field. Point sampling, on the other
hand, uses a set of dispersed samples to characterize field conditions, such as phosphorous,
potassium, and nitrogen levels. The nature of the data derived by the two approaches are radically
different— a "direct census" of yield consisting of thousands of on-the fly samples versus a "statistical
estimate" of the geographic distribution of soil nutrients based on a handful of soil samples.
 

Figure 6.3.1-1. The Precision Agriculture process analysis involves Data Logging, Point Sampling,
Data Analysis and Prescription Mapping.

 
In data logging, issues of accurate measurement, such as GPS positioning and material flow
adjustments, are major concerns. Most systems query the GPS and yield monitor every second,
which at 4 mph translates into about 6 feet. With differential positioning the coordinates are accurate
to about a meter. However the paired yield measurement is for a location well behind the harvester,
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as it takes several seconds for material to pass from the point of harvest to the yield monitor. To
complicate matters, the mass flow and speed of the harvester are constantly changing when different
terrain and crop conditions are encountered. The precise placement of GPS/Yield records are not
reflected as much in the accuracy of the GPS receiver as in "smart" yield mapping software.
 
In point sampling, issues of surface modeling (estimating between sample points) are of concern,
such as sampling frequency/pattern and interpolation technique to use.  The cost of soil lab analysis
dictates "smart sampling" techniques based on terrain and previous data be used to balance spatial
variability with a farmer’s budget. In addition, techniques for evaluating alternative interpolation
techniques and selecting the "best" map using residual analysis are available in some of the soil
mapping systems.
 
In both data logging and point sampling, the resolution of the analysis grid used to geographically
summarize the data is a critical concern. Like a stockbroker’s analysis of financial markets, the
fluctuations of individual trades must be "smoothed" to produce useful trends.  If the analysis grid is
too coarse, information is lost in the aggregation over large grid spaces; if too small, spurious
measurement and positioning errors dominate the information.
 
The technical issues surrounding mapped data analysis involve the validity of applying traditional
statistical techniques to spatial data. For example, regression analysis of field plots has been used for
years to derive crop production functions, such as corn yield (dependent variable) versus potassium
levels (independent variable). In a GIS, you can use regression to derive a production function
relating mapped variables, such as the links among a map of corn yield and maps of soil nutrients—
like analyzing thousands of sample plots. However, technical concerns, such as variable
independence and autocorrelation, have yet to be thoroughly investigated. Statistical measures
assessing results of the analysis, such as a spatially responsive correlation coefficient, await
discovery and acceptance by the statistical community, let alone the farm community.
 
In theory, prescription modeling moves the derived relationships in space or time to determine the
optimal actions, such as the blend of phosphorous, potassium and nitrogen to be applied at each
location in the field.  In current practice, these translations are based on existing science and
experience without a direct link to data analysis of on-farm data. For example, a prescription map for
fertilization is constructed by noting the existing nutrient levels (condition) then assigning a blend of
additional nutrients (action) tailored to each location forming an if-(condition)-then-(action) set of rules.
The issues surrounding spatial modeling are similar to data analysis and involve the validity of using
traditional "goal seeking" techniques, such as linear programming or genetic modeling, to calculate
maps of the optimal actions.
 
6.3.2 The Big Picture
 
The precision agriculture process is a special case of spatial data mining described in section 2.1.  It
involves deriving statistical models that spatially relate map variables to generate predictions that
guide management actions.  In the earlier case discussed the analysis involved a prediction model
relating product sales to demographic data.  In the precision agriculture example, corn yield is
substituted for sales and nutrient levels are substituted for demographics. 
 
The big picture however, is the same—relating a dependent map variable (sales or yield) to
independent map variables (demographics or nutrients) that easily obtained and thought to drive
relationship.  What separates the two applications is their practical implementation.  Sales mapping
utilizes existing databases to derive the maps and GIS to form the solution. 
 



Figure 6.3.2-1. Precision Agriculture involves applying emerging spatial technologies of GPS, GIS
and IDI.

 
Precision agriculture, on the other hand, is a much more comprehensive solution.  It requires the
seamless integration of three technologies— global positioning system (GPS), geographic information
systems (GIS) and intelligent devices and implements (IDI) for on-the-fly data collection (monitors)
and variable-rate application (controls) as depicted in the left-side of figure 6.3.2-1.
 
Modern GPS receivers are able to establish positions within a field to few feet.  When connected to a
data collection device, such as a yield/moisture monitor, these data can be assigned geographic
coordinates.  The GIS is used to extend map visualization of yield to analysis of the relationships
among yield variability and field conditions.
 
Once established these relationships are used to derive a prescription map of management actions
required for each location in a field.  The final element, variable rate implements, notes a tractor’s
position through GPS, continuously locates it on the prescription map, and then varies the application
rate of field inputs, such as fertilizer blend or seed spacing, in accordance with the instructions on the
prescription map.
 
Site-specific management through statistical modeling extends our traditional understanding of farm
fields from "where is what" to analytical renderings of "so what" by relating variations in crop yield to
field conditions, such as soil nutrient levels, available moisture and other driving variables. Once
these relationships are established, they can be used to insure the right thing is done, in the right way,
at the right place and time. Common sense leads us to believe the efficiencies in managing field
variability outweigh the costs of the new technology. However, the enthusiasm for site-specific
management must be dampened by reality consisting of at least two parts: empirical verification and
personal comfort.
 
To date, there have not been conclusive studies that economically justify site-specific management in
all cases.  In addition, the technological capabilities appear somewhat to be ahead of scientific
understanding and a great deal of spatial research lies ahead.  In the information age, a farmer’s
ability to react to the inherent variability within a field might determine survival and growth of
tomorrow’s farms. 
 
From the big picture perspective however, precision agriculture is pushing the envelope of GIS
modeling and analysis as well as linking it to robotics.  This is quite a feat for a discipline that had
minimal use of mapping just a decade ago.

 
 
7.0 Conclusions

 
Research, decision-making and policy development in the management of land have always required information as
their cornerstone.  Early information systems relied on physical storage of data and manual processing.  With the
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advent of the computer, most of these data and procedures have been automated during the past three decades.  As
a result, land-based information processing has increasingly become more quantitative.  Systems analysis techniques
developed links between descriptive data of the landscape to the mix of management actions that maximizes a set of
objectives.  This mathematical approach to land management has been both stimulated and facilitated by modern
information systems technology.  The digital nature of mapped data in these systems provides a wealth of new
analysis operations and an unprecedented ability to model complex spatial issues.  The full impact of the new data
form and analytical capabilities is yet to be determined.
 
Effective map analysis applications have little to do with data and everything to do with understanding, creativity and
perspective.  It is a common observation of the Information Age that the amount of knowledge doubles every fourteen
months or so.  It is believed, with the advent of the information super highway, this periodicity will likely accelerate.  But
does more information directly translate into better decisions?  Does the Internet enhance information exchange or
overwhelm it?  Does the quality of information correlate with the quantity of information?  Does the rapid boil of
information improve or scorch the broth of decisions?
 
Geotechnology technology is a major contributor to the tsunami of information, as terra bytes of mapped data are
feverishly released on an unsuspecting (and seemingly ungrateful) public.  From a GIS-centric perspective, the
delivery of accurate base data is enough.  However, the full impact of the technology is in the translation of “where is
what, to why and so what.”  The effects of information rapid transit on our changing perceptions of the world around us
involve a new expression of the philosophers’ view of the stages of enlightenment— data, information, knowledge, and
wisdom.  The terms are often used interchangeably, but they are distinct from one another in some subtle and not-so-
subtle ways.
 
The first is data, the "factoids" of our Information Age.  Data are bits of information, typically but not exclusively, in a
numeric form, such as cardinal numbers, percentages, statistics, etc.  It is exceedingly obvious that data are
increasing at an incredible rate.  Coupled with the barrage of data, is a requirement for the literate citizen of the future
to have a firm understanding of averages, percentages, and to a certain extent, statistics.  More and more, these types
of data dominate the media and are the primary means used to characterize public opinion, report trends and
persuade specific actions.
 
The second term, information, is closely related to data.  The difference is that we tend to view information as more
word-based and/or graphic than numeric.  Information is data with explanation.  Most of what is taught in school is
information.  Because it includes all that is chronicled, the amount of information available to the average citizen
substantially increases each day.  The power of technology to link us to information is phenomenal.  As proof, simply
"surf" the exploding number of "home pages" on the Internet.
 
The philosophers' third category is knowledge, which can be viewed as information within a context.  Data and
information that are used to explain a phenomenon become knowledge.  It probably does not double at fast rates, but
that really has more to do with the learner and processing techniques than with what is available.  In other words, data
and information become knowledge once they are processed and applied.
 
The last category, wisdom, certainly does not double at a rapid rate.  It is the application of all three previous
categories, and some intangible additions.  Wisdom is rare and timeless, and is important because it is rare and
timeless.  We seldom encounter new wisdom in the popular media, nor do we expect a deluge of newly derived
wisdom to spring forth from our computer monitors each time we log on.
 
Knowledge and wisdom, like gold, must be aggressively processed from tons of near worthless overburden.  Simply
increasing data and information does not assure the increasing amounts of the knowledge and wisdom we need to
solve pressing environmental and resource problems.  Increasing the processing "thruput" by efficiency gains and new
approaches might.
 
How does this philosophical diatribe relate to geotechnology and map analysis?  What is GIS’s role within the
framework?  What does it deliver— data, information, knowledge or wisdom?  Actually, if GIS is appropriately
presented, nurtured and applied, it can affect all four.  That is provided the technology's role is recognized as an
additional link that the philosophers failed to note. 
 
Understanding sits at the juncture between the data/information and knowledge/wisdom stages of enlightenment. 
Understanding involves the honest dialog among various interpretations of data and information in an attempt to reach
common knowledge and wisdom.  Note that understanding is not a "thing," but a process.  It is how concrete facts are
translated into the slippery slope of beliefs.  It involves the clash of values, tempered by judgment based on the
exchange of experience.  Technology, and in particular GIS modeling and analysis, has a vital role to play in this
process.  It is not sufficient to deliver spatial data and information; a methodology for translating them into knowledge
and wisdom is needed.
 
Tomorrow's GIS builds on the cognitive basis, as well as the spatial databases and analytical operations of the



technology.  This new view pushes GIS beyond data mapping, management and modeling, to spatial reasoning and
dialogue focusing on the communication of ideas.  In a sense, modeling and analysis extends the GIS toolbox to a
social "sandbox," where alternative perspectives are constructed, discussed and a common understanding is distilled. 
 
This step needs to fully engage the end-user in GIS itself, not just its encoded and derived products.  It requires a
democratization of geotechnology that goes beyond a graphical user interface and cute icons.  It obligates the GIS
community to explain concepts in layman terms and provide access to their conceptual expressions of geographic
space.  In turn, it requires the user community to embrace the new modeling and analysis approaches to spatial
reasoning and dialogue.  GIS has an opportunity to empower people with new decision-making tools, not simply
entrap them in a new technology and an accelerating avalanche of data.  The mapping, management and modeling of
spatial data is necessary, but not sufficient for effective solutions.  Like the automobile and indoor plumbing, GIS will
not be an important technology until it fades into the fabric of the decision-making process and is taken for granted. 
Modeling and analysis for understanding spatial relationships needs to become as second nature and comfortable as
the traditional paper map. 
 
Author’s Notes
 
See Map Analysis, an online compilation of Joseph K. Berry's Beyond Mapping columns published in GeoWorld
magazine from 1996 through 2007.  It is intended to be used as a self-instructional text or in support of formal
academic courses for study of grid-based map analysis and GIS modeling.
http://innovativegis.com/basis/MapAnalysis/, Map Analysis online book
http://innovativegis.com/basis/, Papers, presentations, instructional and other materials on map analysis and
GIS modeling
 
Hardcopy books and companion CDs for hands-on exercises by the author on map analysis and GIS moeling include
—
 
http://www.innovativegis.com/basis/Books/MapAnalysis/Default.htm, Map Analysis by J. K. Berry (GeoTec Media
2007)
http://www.innovativegis.com/basis/Books/AnalyzingNRdata/Default.htm, Analyzing Geospatial Resource Data by J.
K. Berry (BASIS 2005)
http://www.innovativegis.com/basis/Books/AnalyzingGBdata/Default.htm, Analyzing Geo-Business Data by J. K.
Berry (BASIS 2003)
http://www.innovativegis.com/basis/Books/AnalyzingPAdata/Default.htm, Analyzing Precision Ag Data by J. K.
Berry (BASIS 2002)   
http://www.innovativegis.com/basis/Books/spatial.htm, Spatial Reasoning for Effective GIS by J. K. Berry (Wiley
1995)
http://www.innovativegis.com/basis/Books/bm_des.html, Beyond Mapping: Concepts, Algorithms and Issues in
GIS by J. K. Berry (Wiley 1993)
 
 
List of Figures
 
1.0, Introduction
-    Figure 1.1-1. Spatial Analysis and Spatial Statistics are extensions of traditional ways of analyzing mapped data.
 
2.0, Map Analysis Approaches
-    Figure 2.1-1.  Calculating the total number of houses within a specified distance of each map location generates a

housing density surface.
-    Figure 2.1-2.  Spatial Data Mining techniques can be used to derive predictive models of the relationships among

mapped data.
-    Figure 2.2-1.  Map Analysis techniques can be used to identify suitable places for a management activity.
 
3.0, Data Structure Implications
-    Figure 3.0-1.  Grid-based data can be displayed in 2D/3D lattice or grid forms.
-    Figure 3.1-1.  A map stack of individual grid layers can be stored as separate files or in a multi-grid table.
-    Figure 3.2-1.  Map values are characterized from two broad perspectives—numeric and geographic—then further

refined by specific data types.
-    Figure 3.2-2.  Discrete and Continuous map types combine the numeric and geographic characteristics of mapped

data.
-    Figure 3.3-1.  3D display “pushes-up” the grid or lattice reference frame to the relative height of the stored map

values.
-    Figure 3.4-1. Comparison of different 2D contour displays using Equal ranges, Equal Count and +/-1 Standard

deviation contouring techniques.
 

http://www.geomarketplace.com/
http://innovativegis.com/basis/MapAnalysis/
http://innovativegis.com/basis/
http://www.innovativegis.com/basis/Books/MapAnalysis/Default.htm
http://www.innovativegis.com/basis/Books/AnalyzingNRdata/Default.htm
http://www.innovativegis.com/basis/Books/AnalyzingGBdata/Default.htm
http://www.innovativegis.com/basis/Books/AnalyzingPAdata/Default.htm
http://www.innovativegis.com/basis/Books/spatial.htm
http://www.innovativegis.com/basis/Books/bm_des.html


4.0, Spatial Statistics Techniques
-    Figure 4.1.1-1.  Spatial interpolation involves fitting a continuous surface to sample points.
-    Figure 4.1.2-1. Variogram plot depicts the relationship between distance and measurement similarity (spatial

autocorrelation).
-    Figure 4.1.3-1.  Spatial comparison of a whole-field average and an IDW interpolated map.
-    Figure 4.1.3-2.  Spatial comparison of IDW and Krig interpolated maps.
-    Figure 4.1.4-1.  A residual analysis table identifies the relative performance of average, IDW and Krig estimates.
-    Figure 4.2.1-1.  Map surfaces identifying the spatial distribution of P,K and N throughout a field.
-    Figure 4.2.1-2.  Geographic space and data space can be conceptually linked.
-    Figure 4.2.1-3.  A similarity map identifies how related the data patterns are for all other locations to the pattern of a

given comparison location.
-    Figure 4.2.2-1.  Level-slice classification can be used to map sub-groups of similar data patterns.
-    Figure 4.2.3-1.  Map clustering identifies inherent groupings of data patterns in geographic space.
-    Figure 4.2.3-2.  Data patterns for map locations are depicted as floating balls in data space.
-    Figure 4.2.3-3.  Clustering results can be roughly evaluated using basic statistics.
-    Figure 4.2.4-1.  The corn yield map (top) identifies the pattern to predict; the red and near-infrared maps (bottom)

are used to build the spatial relationship.
-    Figure 4.2.4-2.  The joint conditions for the spectral response and corn yield maps are summarized in the scatter

plots shown on the right.
-    Figure 4.2.4-3.  The red and NIR maps are combined for NDVI value that is a better predictor of yield.
-    Figure 4.2.5-1.  A project area can be stratified based on prediction errors.
-    Figure 4.2.5-2.  After stratification, prediction equations can be derived for each element.
-    Figure 4.2.5-3.  Stratified and whole-field predictions can be compared using statistical techniques.
 
5.0, Spatial Analysis Techniques
-    Figure 5.0-1.  An iterative processing environment, analogous to basic math, is used to derive new map variables.
-    Figure 5.2-1.  Areas of meadow and forest on a cover type map can be reclassified to isolate large areas of open

water.
-    Figure 5.2-2.  A sequence of reclassification operations (renumber, clump, size and renumber) can be used to

isolate large water bodies from a cover type map.
-    Figure 5.3-1.  Point-by point overlaying operations summarize the coincidence of two or more maps, such as

assigning a unique value identifying the cover type and slope class conditions at each location.
-    Figure 5.3-2.  Category-wide overlay operations summarize the spatial coincidence of map categories, such as

generating the average slope for each cover type category.
-    Figure 5.4-1.  Proximity identifies the set of shortest straight-lines among groups of points (distance zones).
-    Figure 5.4-2.  Proximity surfaces can be generated for groups of points, lines or polygons identifying the shortest

distance from all location to the closest occurrence.
-    Figure 5.4-3.  Effective Proximity surfaces consider the characteristics and conditions of movement throughout a

project area.
-    Figure 5.4-4. Effective Distance waves are distorted as they encounter absolute and relative barriers, advancing

faster under easy conditions and slower in difficult areas.
-    Figure 5.4-5.  The basic set of distance operations can be extended by considering the dynamic nature of the

implied movement.
-    Figure 5.5-1.  The two fundamental classes of neighborhood analysis operations involve Characterizing Surface

Configuration and Summarizing Map Values.
-    Figure 5.5-2.  At a location, the eight individual slopes can be calculated for a 3x3 window and then summarized for

the maximum, minimum, median and average slope.
-    Figure 5.5-3.  Best-Fitted Plane and Vector Algebra can be used to calculate overall slope.
-    Figure 5.5-4  Approach used in deriving a Customer Density surface from a map of customer locations.
-    Figure 5.5-5.  Calculations involved in deriving customer density.
 
6.0, GIS Modeling Frameworks
-    Figure 6.1-1.  Binary maps representing Hugag habitat preferences are coded as 1= good and 0= bad.
-    Figure 6.1.2-1.  The binary habitat maps are multiplied together to create a Binary Suitability map (good or bad) or

added together to create a Ranking Suitability map (bad, marginal, better or best).
-    Figure 6.1.2-2.  The sum of a binary progression of values on individual map layers results in a unique value for

each combination.
-    Figure 6.1.3-1.  A Rating Suitability map is derived by averaging a series of “graded” maps representing individual

habitat criteria.
-    Figure 6.2.1-1.  GIS-based routing uses three steps to establish a discrete map of the relative preference for siting

at each location, generate an accumulated preference surface from a starting location(s) and derive the optimal
route from an end point as the path of least resistance guided by the surface.

-    Figure 6.2.2-1.  The sum of accumulated surfaces is used to identify siting corridors as low points on the total
accumulated surface.

-    Figure 6.2.3-1.  The Delphi Process uses structured group interaction to establish a consistent rating for each map



layer.
-    Figure 6.2.4-1.  The Analytical Hierarchy Process uses direct comparison of map layers to derive their relative

importance.
-    Figure 6.2.5-1.  Alternate routes are generated by evaluating the model using weights derived from different group

perspectives. (Courtesy of Photo Science and Georgia Transmission Corporation)
-    Figure 6.3.1-1. The Precision Agriculture process analysis involves Data Logging, Point Sampling, Data Analysis

and Prescription Mapping.
-    Figure 6.3.2-1. Precision Agriculture involves applying emerging spatial technologies of GPS, GIS and IDI.
 
             
 
 
 
 

 
 
 


